Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 309: 106599, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31569053

RESUMO

Multilayer flexible substrates offer a means to combine high lateral precision and resolution with roll-up processes, allowing layer-based manufacturing to reach into the third dimension. Here we explore this combination to achieve an otherwise hard-to-manufacture resonator geometry: the double-helix. The use of commercial flexPCB technology enabled optimal winding connections and a versatile adjustment to various operation fields, sample volumes and resonance numbers. The sensitivity of the design is shown to greatly benefit from the fabrication method, though optimal electrical connections and several radially-wound windings, and was measured to outperform an equivalent solenoid despite the known geometrical disadvantage.

2.
Lab Chip ; 16(20): 4002-4011, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27713985

RESUMO

Typical Lab-on-a-Disc (LoaD) platforms cannot make a continuous measurement while the disc is spinning; this drawback means that the disc usually must be stopped and aligned with a sensor. This can result in measurement errors in time-dependent assays along with inaccuracies due to liquid displacement and bubble formation in the absence of a stabilising centrifugal field. This paper presents a novel concept for a wirelessly electrified-Lab-on-a-Disc (eLoaD) platform that allows continuous measurement of experimental parameters while the disc is spinning. This platform incorporates all the components needed for measurement within the rotating frame of reference, and bidirectional transmission of data outside this reference frame, thus allowing for online measurement independent of the rotation of the disc. The eLoaD platform is conceived in a modular manner whereby an interchangeable and non-disposable 'Application Disc' can be fitted to the eLoaD platform and so the system can be adapted for a range of optical, electrochemical and other measurement types. As an application example, optical readout, using the Application Disc fitted with a silicon photomultiplier, is demonstrated using a tagged chemiluminescent antibody, which is commonly used, for instance, in ELISA assays. The precision of the eLoaD platform is >94%, while its accuracy, when compared to a commercial benchtop luminometer, is higher than 96%. The modular design of this platform will permit extension of this technology to many other LoaD applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA