Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 535: 203-217, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37949310

RESUMO

Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Orosomucoide/efeitos adversos , Cuprizona/toxicidade , Proteômica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
STAR Protoc ; 4(3): 102467, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37585294

RESUMO

3D bioprinting has opened new possibilities and elevated tissue engineering complexity. Here, we present a protocol to design a 3D model with two cell lineage layers (A549 and HUVEC) to recreate multi-cell constructs. We describe the steps for slicing the constructs, handling hydrogels, and detailing the bioprinting setup. These 3D-bioprinted constructs can be adapted to various cell models-from primary cell cultures to commercial cell lines and induced pluripotent stem cells (IPCs)-and applications, including drug screening and disease modeling. For complete details on the use and execution of this protocol, please refer to Cruz et al.1.


Assuntos
Bioimpressão , Bioimpressão/métodos , Engenharia Tecidual/métodos , Hidrogéis
3.
Glia ; 70(5): 808-819, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34816453

RESUMO

Since the early observations made by Santiago Ramon y Cajal more than a century ago till now, astrocytes have gradually gained protagonism as essential partners of neurons in building brain circuits that regulate complex behavior. In mammals, processes such as sleep-wake cycle, locomotor activity, cognition and memory consolidation, homeostatic and hedonic appetite and stress response (among others), are synchronized in 24-h rhythms by the circadian system. In such a way, physiology efficiently anticipates and adapts to daily recurring changes in the environment. The hypothalamic suprachiasmatic nucleus (SCN) is considered the central pacemaker, it has been traditionally described as a nucleus of around 10,000 neurons nearly all GABAergic able to be entrained by light and to convey time information through multiple neuronal and hormonal pathways. Only recently, this neuro-centered view was challenged by breakthrough discoveries implicating astrocytes as essential time-keepers. In the present review, we will describe the current view on the SCN circuit and discuss whether astrocytic functions described in other brain regions and state-of-the-art experimental approaches, could help explaining better those well- and not so well-known features of the central pacemaker.


Assuntos
Astrócitos , Marca-Passo Artificial , Animais , Astrócitos/metabolismo , Ritmo Circadiano/fisiologia , Mamíferos/fisiologia , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo
4.
Front Cell Dev Biol ; 9: 649854, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222228

RESUMO

After a brain lesion, highly specialized cortical astrocytes react, supporting the closure or replacement of the damaged tissue, but fail to regulate neural plasticity. Growing evidence indicates that repair response leads astrocytes to reprogram, acquiring a partially restricted regenerative phenotype in vivo and neural stem cells (NSC) hallmarks in vitro. However, the molecular factors involved in astrocyte reactivity, the reparative response, and their relation to adult neurogenesis are poorly understood and remain an area of intense investigation in regenerative medicine. In this context, we addressed the role of Notch1 signaling and the effect of Galectin-3 (Gal3) as underlying molecular candidates involved in cortical astrocyte response to injury. Notch signaling is part of a specific neurogenic microenvironment that maintains NSC and neural progenitors, and Gal3 has a preferential spatial distribution across the cortex and has a central role in the proliferative capacity of reactive astrocytes. We report that in vitro scratch-reactivated cortical astrocytes from C57Bl/6J neonatal mice present nuclear Notch1 intracellular domain (NICD1), indicating Notch1 activation. Colocalization analysis revealed a subpopulation of reactive astrocytes at the lesion border with colocalized NICD1/Jagged1 complexes compared with astrocytes located far from the border. Moreover, we found that Gal3 increased intracellularly, in contrast to its extracellular localization in non-reactive astrocytes, and NICD1/Gal3 pattern distribution shifted from diffuse to vesicular upon astrocyte reactivation. In vitro, Gal3-/- reactive astrocytes showed abolished Notch1 signaling at the lesion core. Notch1 receptor, its ligands (Jagged1 and Delta-like1), and Hes5 target gene were upregulated in C57Bl/6J reactive astrocytes, but not in Gal3-/- reactive astrocytes. Finally, we report that Gal3-/- mice submitted to a traumatic brain injury model in the somatosensory cortex presented a disrupted response characterized by the reduced number of GFAP reactive astrocytes, with smaller cell body perimeter and decreased NICD1 presence at the lesion core. These results suggest that Gal3 might be essential to the proper activation of Notch signaling, facilitating the cleavage of Notch1 and nuclear translocation of NICD1 into the nucleus of reactive cortical astrocytes. Additionally, we hypothesize that reactive astrocyte response could be dependent on Notch1/Jagged1-Hes5 signaling activation following brain injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...