Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38798175

RESUMO

Although agrochemical practices can enhance agricultural productivity, their intensive application has resulted in the deterioration of ecosystems. Therefore, it is necessary to develop more efficient and less toxic methods against pests and infections while improving crop productivity. Moving toward sustainable development, in this work, we originally described the preparation of a composite (ZIF-8@HA) consisting of the coating of zeolitic-like metal-organic framework (MOF) ZIF-8 (based on Zn, an essential micronutrient in plants with antibacterial, antifungal, and antifouling properties) with hydroxyapatite (HA) nanoparticles (i.e., nanofertilizer). The interaction between the HA and ZIF-8 has been characterized through a combination of techniques, such as microscopic techniques, where the presence of a HA coating is demonstrated; or by analysis of the surface charge with a dramatic change in the Z-potential (from +18.7 ± 0.8 to -27.6 ± 0.7 mV for ZIF-8 and ZIF-8@HA, respectively). Interestingly, the interaction of HA with ZIF-8 delays the MOF degradation (from 4 h for pristine ZIF-8 to 168 h for HA-coated material), providing a slower and gradual release of zinc. After a comprehensive characterization, the potential combined fertilizer and bactericidal effect of ZIF-8@HA was investigated in wheat (Triticum aestivum) seeds and Pseudomonas syringae (Ps). ZIF-8@HA (7.3 ppm) demonstrated a great fertilizer effect, increasing shoot (9.4 %) and root length (27.1 %) of wheat seeds after 11 days at 25 °C under dark conditions, improving the results obtained with HA, ZIF-8, or ZnSO4 or even physically mixed constituents (HA + ZIF-8). It was also effective in the growth inhibition (>80 % of growth inhibition) of Ps, a vegetal pathogen causing considerable crop decline. Therefore, this work demonstrates the potential of MOF@HA composites and paves the way as a promising agrochemical with improved fertilizer and antibacterial properties.

2.
J Sci Food Agric ; 104(2): 598-610, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37615514

RESUMO

BACKGROUND: Elicitors induce defense mechanisms, triggering the synthesis of secondary metabolites. Irrigation has implications for a more sustainable viticulture and for grape composition. The aim was to investigate the influence on grape aroma composition during 2019 and 2020 of the foliar application of amorphous calcium phosphate (ACP) nanoparticles and ACP doped with methyl jasmonate (ACP-MeJ), as an elicitor, with rainfed or regulated deficit irrigation (RDI) grapevines. RESULTS: In both growing seasons, nearly all terpenoids, C13 norisoprenoids, benzenoid compounds and alcohols increased with ACP-MeJ under the RDI regimen. In 2019, under the rainfed regime, ACP treatment increased limonene, p-cymene, α-terpineol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), 2-ethyl-1-hexanol, (E,E)-2,4-heptadienal, and MeJ concentration in comparison with control grapes. In 2020, the rainfed regime treated with ACP-MeJ only increased the nonanoic acid content. Grape volatile compounds were most influenced by season and watering status whereas the foliar application mainly affected the terpenoids. CONCLUSION: A RDI regime combined with the elicitor ACP-MeJ application could improve the synthesis of certain important volatile compounds, such as p-cymene, linalool, α-terpineol, geranyl acetone, ß-ionone, 2-phenylethanol, benzyl alcohol, and nonanoic acid in Monastrell grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Vitis , Vinho , Vitis/química , Monoterpenos Cicloexânicos/análise , Vinho/análise , Frutas/química
3.
Environ Sci Technol ; 57(40): 14950-14960, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37753594

RESUMO

Calcium phosphate nanoparticles were doped with zinc ions to produce multifunctional nanomaterials for efficient agronomic fortification and protection of plants. The resulting round-shaped nanoparticles (nanoZn) were composed of 20.3 wt % Ca, 14.8 wt % P, and 13.4 wt % Zn and showed a pH-controlled solubility. NanoZn were stable in aqueous solutions at neutral pH but dissolved in citric acid at pH 4.5 (i.e., the pH inside tomato fruits), producing a pH-responsive delivery of the essential nutrients Ca, P, and Zn. In fact, the foliar application of nanoZn on tomato plants provided tomatoes with the highest Zn, Ca, and P contents (causing, respectively, a 65, 65, and 15% increase with respect to a conventional treatment with ZnSO4) and the highest yields. Additionally, nanoZn (100 ppm of Zn) inhibited in vitro the growth of Pseudomonas syringae (Ps), the main cause of bacterial speck, and significantly reduced Ps incidence and mortality in tomato seeds, previously inoculated with the pathogen. Therefore, nanoZn present dual agricultural applicability, enriching crops with nutrients with important metabolic functions in humans and simultaneously protecting the plants against important bacterial-based diseases, with considerable negative impact in crop production.


Assuntos
Nanoestruturas , Solanum lycopersicum , Humanos , Biofortificação/métodos , Zinco , Produtos Agrícolas
4.
Int J Nanomedicine ; 18: 5075-5093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701822

RESUMO

Introduction: Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects. Methods: Amorphous Calcium Phosphate (ACP) NPs were synthesized through a biomimetic approach and then functionalized with OLA and AA (NP-ACP-OLA-AA). After evaluation of the loading capacity and release kinetic, cytotoxicity, cell migration, immunofluorescence, and gene expression assays were performed using pancreatic tumor cell lines. In vivo studies were carried out on tumors derived from the PANC-1 line in NOD SCID gamma (NSG) mice. Results: NP-ACP-OLA-AA was loaded with 13%wt of OLA (75% loading efficiency) and 1% of AA, respectively. The resulting dual nanosystem exhibited a gradual release of OLA and AA, being the latter protected from degradation in solution. This ensured the simultaneous availability of OLA and AA for a longer period, at least, during the entire time of in vitro cell experiments (72 hours). In vitro studies indicated that NP-ACP-OLA-AA showed the best cytotoxic effect outperforming that of the free OLA and a higher genotoxicity and apoptosis-mediated cytotoxic effect in human pancreatic ductal adenocarcinoma cell line. Interestingly, the in vivo assays using immunosuppressed mice with PANC-1-induced tumors revealed that NP-ACP-OLA-AA produced a higher tumor volume reduction (59.1%) compared to free OLA (28.3%) and increased the mice survival. Conclusion: Calcium phosphate NPs, a highly biocompatible and biodegradable system, were an ideal vector for the OLA and AA co-treatment in PC, inducing significant therapeutic benefits relative to free OLA, including cytotoxicity, induction of apoptosis, inhibition of cell migration, tumor growth, and survival.


Assuntos
Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Ácido Ascórbico/farmacologia , Neoplasias Pancreáticas
5.
Biomater Adv ; 154: 213587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633007

RESUMO

In this work, Engineered Living Materials (ELMs), based on the combination of genetically-modified bacteria and mineral-reinforced organic matrices, and endowed with self-healing or regenerative properties and adaptation to specific biological environments were developed. Concretely, we produced ELMs combining human mesenchymal stem cells (hMSCs) and Lactococcus lactis (L. lactis), which was specifically programmed to deliver bone morphogenetic protein (BMP-2) upon external stimulation using nisin, into mineralized alginate matrices. The hybrid organic/inorganic matrix was built through a protocol, inspired by bone mineralization, in which alginate (Alg) assembly and apatite (HA) mineralization occurred simultaneously driven by calcium ions. Chemical composition, structure and reologhical properties of the hybrid 3D matrices were dedicately optimized prior the incorportation of the living entities. Then, the same protocol was reproduced in the presence of hMSC and engineered L. lactis that secrete BMP-2 resulting in 3D hybrid living hydrogels. hMSC viability and osteogenic differentiation in the absence and presence of the bacteria were evaluated by live/dead and quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence assays, respectively. Results demonstrate that these 3D engineered living material support osteogenic differentiation of hMSCs due to the synergistic effect between HA and the growth factors BMP-2 delivered by L. lactis.


Assuntos
Calcinose , Células-Tronco Mesenquimais , Humanos , Osteogênese/genética , Alicerces Teciduais/química , Células-Tronco Mesenquimais/metabolismo , Alginatos , Diferenciação Celular , Calcinose/metabolismo
6.
ACS Appl Bio Mater ; 6(1): 157-163, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520018

RESUMO

Probiotic cellulose (PC), a living material (LM) consisting of probiotics integrated into bacterial cellulose, is the first example where life (probiotic proliferation) is the input to tune the viscoelasticity of the biomaterial. The gradual proliferation of probiotics within the matrix acts as a key modulator of the cellulose viscoelasticity, providing from celluloses with lower-than-matrix viscoelasticity to celluloses with viscoelastic moduli closer to those of elastic solids. This concept is a promising approach to producing living bio-ink with tunable viscoelastic response of special interest for specific applications such as 3D printing. In contrast to the most common hydrogels with stimuli-tunable mechanical properties, which require external stimuli such as mechanical stress, UV radiation, or heat, this living bio-ink only requires time to tune from a fluid-like into a solid-like biomaterial.


Assuntos
Materiais Biocompatíveis , Celulose , Hidrogéis , Impressão Tridimensional , Proliferação de Células
7.
Biomed Pharmacother ; 155: 113723, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156367

RESUMO

Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.34% (w/w) for esculetin and euphorbetin, respectively) and adsorption efficiency (2.6% and 33.5%, respectively). BC-ACP NPs, no toxic to human blood cells, showed a more selective cytotoxicity against colorectal cancer (CRC) cells (T-84 cells) (IC50, 71.42 µg/ml) compared to non-tumor (CCD18) cells (IC50, 420.77 µg/ml). Both, the inhibition of carbonic anhydrase and autophagic cell death appeared to be involved in their action mechanism. Interestingly, in vivo treatment with BC-ACPs NPs using two different models of CRC induction showed a significant reduction in tumor volume (62%) and a significant decrease in the number and size of polyps. A poor development of tumor vasculature and invasion of normal tissue were also observed. Moreover, treatment increased the bacterial population of Akkermansia by restoring antioxidant systems in the colonic mucosa of mice. These results show a promising pathway to design innovative and more efficient therapies against CRC based on biomimetic calcium phosphate NPs loaded with natural products.


Assuntos
Produtos Biológicos , Anidrases Carbônicas , Neoplasias do Colo , Euphorbia , Nanopartículas , Humanos , Camundongos , Animais , Antioxidantes , Neoplasias do Colo/tratamento farmacológico , Cumarínicos , Fosfatos de Cálcio
8.
Nanoscale ; 14(15): 5716-5724, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35348133

RESUMO

Probiotic bacteria were used as carriers of metallic nanoparticles to develop innovative oral agents for hyperthermia cancer therapy. Two synthetic strategies were used to produce the different therapeutic agents. First, the probiotic bacterium Lactobacillus fermentum was simultaneously loaded with magnetic (MNPs) and gold nanoparticles (AuNPs) of different morphologies to produce AuNP + MNP-bacteria systems with both types of nanoparticles arranged in the same layer of bacterial exopolysaccharides (EPS). In the second approach, the probiotic was first loaded with AuNP to form AuNP-bacteria and subsequently loaded with MNP-EPS to yield AuNP-bacteria-EPS-MNP with the MNP and AuNP arranged in two different EPS layers. This second strategy has never been reported and exploits the presence of EPS-EPS recognition which allows the layer-by-layer formation of structures on the bacteria external wall. The AuNP + MNP-bacteria and AuNP-bacteria-EPS-MNP samples were characterized by scanning (SEM) and transmission electron microscopy (TEM), and UV-vis spectroscopy. The potential of these two heterobimetallic systems as magnetic hyperthermia or photothermal therapy agents was assessed, validating their capacity to produce heat either during exposure to an alternating magnetic field or near-infrared laser light. The probiotic Lactobacillus fermentum has already been proposed as an oral drug carrier, able to overcome the stomach medium and deliver drugs to the intestines, and it is actually marketed as an oral supplement to reinforce the gut microbiota, thus, our results open the way for the development of novel therapeutic strategies using these new heterobimetallic AuNP/MNP-bacteria systems in the frame of gastric diseases, using them, for example, as oral agents for cancer treatment with magnetic hyperthermia and photothermal therapy.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Probióticos , Bactérias , Ouro/química , Humanos , Hipertermia , Campos Magnéticos , Nanopartículas Metálicas/química
9.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064907

RESUMO

The constant increase of antibiotic-resistant bacteria demands the design of novel antibiotic-free materials. The combination of antibacterials in a biocompatible biomaterial is a very promising strategy to treat infections caused by a broader spectrum of resistant pathogens. Here, we combined two antibacterials, silver nanoparticles (AgNPs) and living probiotics (Lactobacillus fermentum, Lf), using bacterial cellulose (BC) as scaffold. By controlling the loading of each antibacterial at opposite BC sides, we obtained a two-sided biomaterial (AgNP-BC-Lf) with a high density of alive and metabolically active probiotics on one surface and AgNPs on the opposite one, being probiotics well preserved from the killer effect of AgNPs. The resulting two-sided biomaterial was characterized by Field-Emission Scanning Electron Microscopy (FESEM) and Confocal Laser Scanning Microscopy (CLSM). The antibacterial capacity against Pseudomonas aeruginosa (PA), an opportunistic pathogen responsible for a broad range of skin infections, was also assessed by agar diffusion tests in pathogen-favorable media. Results showed an enhanced activity against PA when both antibacterials were combined into BC (AgNP-BC-Lf) with respect to BC containing only one of the antibacterials, BC-Lf or AgNP-BC. Therefore, AgNP-BC-Lf is an antibiotic-free biomaterial that can be useful for the therapy of topical bacterial infections.


Assuntos
Antibacterianos/farmacologia , Celulose/farmacologia , Nanopartículas Metálicas/química , Probióticos/farmacologia , Prata/farmacologia , Materiais Biocompatíveis , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
10.
Acta Biomater ; 124: 244-253, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33524562

RESUMO

The alarming increase of antibiotic-resistant bacteria, causing conventional treatments of bacterial infections to become increasingly inefficient, is one of the biggest threats to global health. Here, we have developed probiotic cellulose, an antibiotic-free biomaterial for the treatment of severe skin infections and chronic wounds. This composite biomaterial was in-depth characterized by Gram stain, scanning electron microscopy (SEM) and confocal fluorescence microscopy. Results demonstrated that probiotic cellulose consists of dense films of cellulose nanofibers, free of cellulose-producing bacteria, completely invaded by live probiotics (Lactobacillus fermentum or Lactobacillus gasseri). Viability assays, including time evolution of pH and reducing capacity against electrochromic polyoxometalate, confirmed that probiotics within the cellulose matrix are not only alive but also metabolically active, a key point for the use of probiotic cellulose as an antibiotic-free antibacterial biomaterial. Antibacterial assays in pathogen-favorable media, a real-life infection scenario, demonstrated that probiotic cellulose strongly reduces the viability of Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA), the most active pathogens in severe skin infections and chronic wounds. Likewise, probiotic cellulose was also found to be effective to inhibit the proliferation of methicillin-resistant SA (MRSA). The combination of the properties of bacterial cellulose as wound dressing biomaterial and the antibacterial activity of probiotics makes probiotic cellulose an alternative to antibiotics for the treatment of topical infections, including severe and hard-to-heal chronic wounds. In addition, probiotic cellulose was obtained by a one-pot synthetic approach under mild conditions, not requiring the long and expensive chemical treatments to purify the genuine bacterial cellulose.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Probióticos , Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Celulose
11.
J Sci Food Agric ; 101(4): 1307-1313, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32789867

RESUMO

BACKGROUND: The use of nanomaterials for the efficient delivery of active species in viticulture is still an unexplored opportunity. Nitrogen, an essential nutrient for grapevine development and wine quality, is commonly provided in the form of urea. However, the application of conventional fertilisers contributes to nitrate leaching and denitrification, thus polluting groundwater and causing a serious environmental impact. Nanotechnology is offering smart solutions towards more sustainable and efficient agriculture. In the present work, we assessed the efficiency of nontoxic amorphous calcium phosphate (ACP) nanoparticles as nanocarriers of urea (U-ACP) through field experiments on Tempranillo grapevines. Four treatments were foliarly applied: U-ACP nanofertiliser (0.4 kg N ha-1 ), commercial urea solutions at 3 and 6 kg N ha-1 (U3 and U6) and a control treatment (water). RESULTS: The grapes harvested from plants treated with U-ACP and U6 provided similar levels of yeast assimilable nitrogen, despite the very large reduction of nitrogen dosage. The concentration of amino acids was greater in U-ACP-treated plants than those of the control and U3 treatments and, barring a few exceptions, the values were comparable with those observed in grapes obtained following U6 treatment. Nanofertilisers provided a high arginine concentration in the musts but low proline concentrations in comparison to the U6 treatment. CONCLUSIONS: The results of this work show the potential benefits of nanotechnology over conventional practices for nitrogen fertilisation. Significantly, the application of U-ACP allowed a considerable reduction of nitrogen dosage to maintain the quality of the harvest, thereby mitigating the environmental impact. © 2020 Society of Chemical Industry.


Assuntos
Produção Agrícola/métodos , Frutas/química , Folhas de Planta/metabolismo , Ureia/metabolismo , Vitis/metabolismo , Fosfatos de Cálcio/química , Fosfatos de Cálcio/metabolismo , Portadores de Fármacos/química , Fertilizantes/análise , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Nanopartículas/metabolismo , Ureia/química , Vitis/química , Vitis/crescimento & desenvolvimento , Vinho/análise
12.
Colloids Surf B Biointerfaces ; 196: 111337, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32949922

RESUMO

The determination of creatinine levels is essential for the detection of renal and muscular dysfunction. Luminescent nanoparticles are emerging as fast, cheap and highly selective sensors for the detection and quantification of creatinine. Nevertheless, current nanosensors only have a short shelf life due to their poor chemical and colloidal stability, which limits their clinical functionality. In this work, we have developed a highly stable, selective and sensitive nanosensor based on europium-doped, amorphous calcium phosphate nanoparticles (Eu-ACP) for the determination of creatinine by luminescence spectroscopy. The colloidal stability of Eu-ACP nanoparticles in aqueous solutions was optimised to ensure a constant signal after up to 4 months in storage. The luminescence intensity of Eu-ACP decreased linearly with the creatinine concentration over the range of 1-120 µM (R2 = 0.995). This concentration-response relationship was used to determine creatinine levels in real urine samples resulting in good recovery percentages. Significantly, selectivity assays indicated that none of the potential interfering species provoked discernible changes in the luminescence intensity.


Assuntos
Európio , Nanopartículas , Fosfatos de Cálcio , Creatinina , Luminescência , Medições Luminescentes
13.
Sci Rep ; 10(1): 12396, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709936

RESUMO

Bio-inspired synthetic calcium phosphate (CaP) nanoparticles (NPs), mimicking the mineral component of bone and teeth, are emergent materials for sustainable applications in agriculture. These sparingly soluble salts show self-inhibiting dissolution processes in undersaturated aqueous media, the control at the molecular and nanoscale levels of which is not fully elucidated. Understanding the mechanisms of particle dissolution is highly relevant to the efficient delivery of macronutrients to the plants and crucial for developing a valuable synthesis-by-design approach. It has also implications in bone (de)mineralization processes. Herein, we shed light on the role of size, morphology and crystallinity in the dissolution behaviour of CaP NPs and on their nitrate doping for potential use as (P,N)-nanofertilizers. Spherical fully amorphous NPs and apatite-amorphous nanoplatelets (NPLs) in a core-crown arrangement are studied by combining forefront Small-Angle and Wide-Angle X-ray Total Scattering (SAXS and WAXTS) analyses. Ca2+ ion release rates differ for spherical NPs and NPLs demonstrating that morphology plays an active role in directing the dissolution kinetics. Amorphous NPs manifest a rapid loss of nitrates governed by surface-chemistry. NPLs show much slower release, paralleling that of Ca2+ ions, that supports both detectable nitrate incorporation in the apatite structure and dissolution from the core basal faces.

14.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486000

RESUMO

Nanotechnology is emerging as a very promising tool towards more efficient and sustainable practices in agriculture. In this work, we propose the use of non-toxic calcium phosphate nanoparticles doped with urea (U-ACP) for the fertilization of Triticum durum plants. U-ACP nanoparticles present very similar morphology, structure, and composition than the amorphous precursor of bone mineral, but contain a considerable amount of nitrogen as adsorbed urea (up to ca. 6 wt % urea). Tests on Triticum durum plants indicated that yields and quality of the crops treated with the nanoparticles at reduced nitrogen dosages (by 40%) were unaltered in comparison to positive control plants, which were given the minimum N dosages to obtain the highest values of yield and quality in fields. In addition, optical microscopy inspections showed that Alizarin Red S stained nanoparticles were able to penetrate through the epidermis of the roots or the stomata of the leaves. We observed that the uptake through the roots occurs much faster than through the leaves (1 h vs. 2 days, respectively). Our results highlight the potential of engineering nanoparticles to provide a considerable efficiency of nitrogen uptake by durum wheat and open the door to design more sustainable practices for the fertilization of wheat in fields.

15.
J Inorg Biochem ; 208: 111098, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454248

RESUMO

We report on the formation of two novel multifunctional isomorphous (4,4) square-grid 2D coordination polymers based on 1H-indazole-5-carboxylic acid. To the best of our knowledge, these complexes are the first examples of 2D-coordination polymers constructed with this novel ligand. We have analysed in detail the structural, magnetic and anti-parasitic properties of the resulting materials. In addition, the capability of inhibiting nitric oxide production from macrophage cells has been measured and was used as an indirect measure of the anti-inflammatory response. Finally, the photocatalytic activity was measured with a model pollutant, i.e. vanillic acid (phenolic compound), with the aim of further increasing the functionalities and applicability of the compounds.


Assuntos
Anti-Inflamatórios , Antiprotozoários , Complexos de Coordenação , Citotoxinas , Indazóis , Leishmania/crescimento & desenvolvimento , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Indazóis/química , Indazóis/farmacologia , Camundongos , Células RAW 264.7
16.
ACS Appl Bio Mater ; 3(3): 1344-1353, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021628

RESUMO

Biomimetic calcium phosphate nanoparticles (CaP) have been actively used in biomedicine, due to their high biodegradability and biocompatibility. However, much less progress has been made regarding their application in precision agriculture, i.e., for the controlled delivery of active species to plants. Herein, we report a straightforward and green synthetic method to dope CaP with potassium (K) and nitrogen (N, as nitrate and urea). By modulating the synthetic conditions in terms of maturation time (at 37 °C) and doping, we prepared K- and N-doped nanoparticles in the form of either amorphous calcium phosphate (ACP) or nanocrystalline apatite (Ap) and studied the impact of the dopants on the ACP-to-Ap transformation pathways. Importantly, we found out that ACP, isolated at low maturation times, incorporates nitrogen (in the form of nitrate and urea) to a larger extent than Ap (2.6 vs 1.1 wt %, respectively). Multinutrient nanofertilizers (so-called nanoU-NPK) with the following composition (wt %) were obtained: Ca (23.3), P (10.1), K (1.5), NO3 (2.9), and urea (4.8). The nanoU-NPK provides a slow and gradual release of the most important plant macronutrients (NPK), with N in two chemical forms, and different kinetics. The concentration of nutrients supplied by 10 g L-1 of nanoU-NPK to the media after 1 week (in mg L-1) was Ca (27.0), P (6.2), K (41.0), NO3 (134.0), and urea (315.0). Preliminary tests on durum wheat have shown that the application of nanoU-NPK allows reducing the amount of nitrogen supplied to the plants by 40% with respect to a conventional treatment, without affecting the final kernel weight per plant. The application of these slow-release NPK nanofertilizers is a promising strategy toward enhancing the efficiency of the fertilization, complying with the concept of precision agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...