Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Res Sq ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464169

RESUMO

Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = -0.52 & Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.

2.
Microbiol Spectr ; : e0096022, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36840586

RESUMO

Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.

3.
Sci Rep ; 12(1): 16474, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182962

RESUMO

Malaria is a major health problem in Peru despite substantial progress achieved by the ongoing malaria elimination program. This study explored the population genetics of 63 Plasmodium falciparum and 170 P. vivax cases collected in the Peruvian Amazon Basin between 2015 and 2019. Microscopy and PCR were used for malaria detection and positive samples were genotyped at neutral and drug resistance-associated regions. The P. falciparum population exhibited a low nucleotide diversity (π = 0.02) whereas the P. vivax population presented a higher genetic diversity (π = 0.34). All P. falciparum samples (n = 63) carried chloroquine (CQ) resistant mutations on Pfcrt. Most P. falciparum samples (53 out of 54) carried sulfadoxine (SD) resistant mutations on Pfdhfr and Pfdhps. No evidence was found of artemisinin resistance mutations on kelch13. Population structure showed that a single cluster accounted for 93.4% of the P. falciparum samples whereas three clusters were found for P. vivax. Our study shows a low genetic diversity for both species with significant differences in genetic sub-structuring. The high prevalence of CQ-resistance mutations could be a result of indirect selection pressures driven by the P. vivax treatment scheme. These results could be useful for public health authorities to safeguard the progress that Peru has achieved towards malaria elimination.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária Vivax , Malária , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Resistência a Medicamentos/genética , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Nucleotídeos/uso terapêutico , Peru/epidemiologia , Plasmodium falciparum/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Sulfadoxina/uso terapêutico
4.
Int J Infect Dis ; 105: 293-297, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33596478

RESUMO

Malaria continues to wreak havoc in the Peruvian Amazon. Lengthy research efforts have brought important lessons on its particular epidemiology: the heterogeneous levels of transmission, the large reservoir of both asymptomatic and submicroscopic infections, the co-transmission of Plasmodium vivax and Plasmodium falciparum in the same areas, and the limitations of current diagnostics. Based on these features, the national elimination program could greatly benefit from simplified standard treatment, with the use of artemisinin-based combination therapy and even shorter schemes of primaquine maintaing the total dosing. It is acknowledged that there is some uncertainty regarding the true prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PD) and genetic polymorphisms related to cytochrome P-450 isozyme 2D6 functioning. Once we have a better understanding, tafenoquine, whether or not in combination with a rapid G6PD enzyme test, may become a future pathway to eliminate the otherwise hidden reservoir of the P. vivax hypnozoite through one standard Plasmodium treatment.


Assuntos
Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Adulto , Aminoquinolinas/uso terapêutico , Artemisininas/uso terapêutico , Feminino , Humanos , Malária Falciparum/epidemiologia , Peru/epidemiologia , Prevalência , Primaquina/administração & dosagem , Primaquina/uso terapêutico , Padrões de Referência
5.
Parasite Epidemiol Control ; 11: e00188, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33145445

RESUMO

Despite increased malaria control efforts, school-aged children (5-14 years) have higher a malaria prevalence compared to children under-five. In high-transmission settings, up to 70% of school-aged children harbour malaria parasitaemia and therefore contribute significantly to the reservoir for transmission. A systematic review was performed to explore the correlation between the malaria parasite carriage in pregnant women and school-aged children living in similar endemic settings of sub Saharan Africa to inform strategies to improve targeted malaria control. In order to obtain data on malaria prevalence in pregnant women and school-aged children living in the same endemic setting, we searched the Malaria in Pregnancy Library, PubMed, Cochrane library and Web of Science in December 2018. We fit a fixed effect model to obtain a pooled risk ratio (PRR) of malaria in school-aged children versus pregnant women and used Poisson regression to estimate risk ratios in school-aged children for every increase in prevalence in pregnant women. We used data from six (out of 1096) sources that included 10 data points. There was a strong linear relation between the prevalence of malaria infection in pregnant women and school-aged children (r = 0·93, p < 0·0001). School-aged children were nearly twice at risk to carry parasites compared to pregnant women (RR = 1.95, 95% CI: 1·69-2.25, p < 0.01). Poisson regression showed that a 1% increase in prevalence of malaria infection in pregnant women was significantly associated with increase in risk in school-aged children by 4%. Malaria infection prevalence in school-aged children is strongly correlated with the prevalence in pregnant women living in the same community, and may be considered as alternative indicators to track temporal and spatial trends in malaria transmission intensity. Chemoprevention strategies targeting school-aged children should be explored to reduce malaria burden and transmission in school-aged children and its potential impact on communities.

6.
J Infect ; 81(3): e1-e5, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682733

RESUMO

In new guidelines published on June 5th 2020, the World Health Organization (WHO) recommends that in areas with ongoing COVID-19 community transmission, governments should encourage the general public to wear face masks in specific situations and settings as part of a comprehensive approach to suppress COVID-19 transmission. Recent online surveys in 206,729 persons residing in nine low- and middle-income countries showed that 32.7%-99.7% of respondents used face masks with significant differences across age groups and sexes. Targeted health promotion strategies and government support are required to increase mask use by the general population.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus , Pandemias , Pneumonia Viral/epidemiologia , Betacoronavirus , COVID-19 , Países em Desenvolvimento , Humanos , Máscaras , SARS-CoV-2
7.
Int J Antimicrob Agents ; 49(4): 456-464, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28237831

RESUMO

Sulfadoxine/pyrimethamine (SP) is still used for malaria control in sub-Saharan Africa; however, widespread resistance is a major concern. This study aimed to determine the dispersal and origin of sulfadoxine resistance lineages in the Democratic Republic of the Congo compared with East African Plasmodium falciparum dihydropteroate synthetase (Pfdhps) haplotypes. The analysis involved 264 isolates collected from patients with uncomplicated malaria from Tanzania, Uganda and DR Congo. Isolates were genotyped for Pfdhps mutations at codons 436, 437, 540, 581 and 613. Three microsatellite loci (0.8, 4.3 and 7.7 kb) flanking the Pfdhps gene were assayed. Evolutionary analysis revealed a shared origin of Pfdhps haplotypes in East Africa, with a distinct population clustering in DR Congo. Furthermore, in Tanzania there was an independent distinct origin of Pfdhps SGEGA resistant haplotype. In Uganda and Tanzania, gene flow patterns contribute to the dispersal and shared origin of parasites carrying double- and triple-mutant Pfdhps haplotypes associated with poor outcomes of intermittent preventive treatment during pregnancy using SP (IPTp-SP). However, the origins of the Pfdhps haplotypes in DR Congo and Eastern Africa sites are different. The genetic structure demonstrated a divergent and distinct population cluster predominated by single-mutant Pfdhps haplotypes at the DR Congo site. This reflects the limited dispersal of double- and triple-mutant Pfdhps haplotypes in DR Congo. This study highlights the current genetic structure and dispersal of high-grade Pfdhps resistant haplotypes, which is important to guide implementation of SP in malaria chemoprevention strategies in the region.


Assuntos
Antimaláricos/farmacologia , Di-Hidropteroato Sintase/genética , Resistência a Medicamentos , Haplótipos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sulfadoxina/farmacologia , África Oriental/epidemiologia , Criança , Pré-Escolar , República Democrática do Congo/epidemiologia , Feminino , Variação Genética , Técnicas de Genotipagem , Humanos , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Repetições de Microssatélites , Plasmodium falciparum/classificação , Plasmodium falciparum/genética
8.
PLoS One ; 11(6): e0157074, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280792

RESUMO

BACKGROUND: In the Democratic Republic of Congo, artesunate-amodiaquine (ASAQ) is the first-line medication recommended for uncomplicated malaria treatment. We conducted a study in Kinshasa to describe the clinical features of the disease and assess the efficacy of ASAQ and its impact on the multiplicity of infection in children with uncomplicated malaria. METHODS: Children aged 12 to 59 months with uncomplicated P. falciparum malaria were treated with ASAQ and followed up passively for 42 days. To distinguish new infections from recrudescent parasites, samples were genotyped using a stepwise strategy with three molecular markers (GLURP, MSP2 and MSP1). We then assessed PCR-corrected and -uncorrected day-42 cure rates and multiplicity of infection (MOI). RESULTS: In total, 2,796 patients were screened and 865 enrolled in the study. Clinical features were characterized by history of fever (100%), coryza (59.9%) and weakness (59.4%). The crude and PCR-corrected efficacies of ASAQ were 55.3% (95%CI: 51.8-58.8) and 92.8% (95%CI: 91.0-94.6) respectively, as 83.6% (95%CI: 79.1-87.2) of the recurrences were new infections. Compared to monoclonal infections, polyclonal infections were more frequent at enrollment (88.1%) and in recurrences (80.1%; p = 0.005; OR: 1.8, 95%CI: 1.20-2.8). The median MOI at enrollment (MOI = 3.7; IQR: 0.7-6.7) decreased to 3 (IQR: 1-5) in the recurrent samples (p<0.001). Patients infected with a single haplotype on day 0 had no recrudescence; the risk of recrudescence increased by 28% with each additional haplotype (HR: 1.3, 95%CI: 1.24-1.44). CONCLUSION: The PCR-corrected efficacy of ASAQ at day 42 was 92.8%, but crude efficacy was relatively poor due to high reinfection rates. Treatment outcomes were positively correlated with MOI. Continued monitoring of the efficacy of ACTs-ASAQ, in this case-is paramount. TRIAL REGISTRATION: ClinicalTrials.gov NCT01374581.


Assuntos
Amodiaquina/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Pré-Escolar , República Democrática do Congo/epidemiologia , Combinação de Medicamentos , Feminino , Humanos , Lactente , Malária Falciparum/epidemiologia , Masculino , Plasmodium falciparum/patogenicidade , Resultado do Tratamento
9.
PLoS Negl Trop Dis ; 10(2): e0004434, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26872387

RESUMO

BACKGROUND: The burden of malaria in Vietnam has drastically reduced, prompting the National Malaria Control Program to officially engage in elimination efforts. Plasmodium vivax is becoming increasingly prevalent, remaining a major problem in the country's central and southern provinces. A better understanding of P. vivax genetic diversity and structure of local parasite populations will provide baseline data for the evaluation and improvement of current efforts for control and elimination. The aim of this study was to examine the population genetics and structure of P. vivax isolates from four communities in Tra Leng commune, Nam Tra My district in Quang Nam, Central Vietnam. METHODOLOGY/PRINCIPAL FINDINGS: P. vivax mono infections collected from 234 individuals between April 2009 and December 2010 were successfully analyzed using a panel of 14 microsatellite markers. Isolates displayed moderate genetic diversity (He = 0.68), with no significant differences between study communities. Polyclonal infections were frequent (71.4%) with a mean multiplicity of infection of 1.91 isolates/person. Low but significant genetic differentiation (FST value from -0.05 to 0.18) was observed between the community across the river and the other communities. Strong linkage disequilibrium ([Formula: see text] = 0.113, p < 0.001) was detected across all communities, suggesting gene flow within and among them. Using multiple approaches, 101 haplotypes were grouped into two genetic clusters, while 60.4% of haplotypes were admixed. CONCLUSIONS/SIGNIFICANCE: In this area of Central Vietnam, where malaria transmission has decreased significantly over the past decade, there was moderate genetic diversity and high occurrence of polyclonal infections. Local human populations have frequent social and economic interactions that facilitate gene flow and inbreeding among parasite populations, while decreasing population structure. Findings provide important information on parasites populations circulating in the study area and are relevant to current malaria elimination efforts.


Assuntos
Variação Genética , Malária Vivax/parasitologia , Plasmodium vivax/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Malária Vivax/epidemiologia , Masculino , Repetições de Microssatélites , Dados de Sequência Molecular , Filogenia , Plasmodium vivax/classificação , Plasmodium vivax/isolamento & purificação , População Rural , Vietnã/epidemiologia , Adulto Jovem
10.
PLoS Negl Trop Dis ; 10(1): e0004376, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26766548

RESUMO

BACKGROUND: Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. METHODOLOGY/ RESULTS: From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5-2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66-0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas ([Formula: see text] = 0.08-0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. CONCLUSION/SIGNIFICANCE: Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described are important from the public health perspective as well for the formulation of future control policies.


Assuntos
Plasmodium vivax/genética , Ligação Genética , Variação Genética , Genótipo , Repetições de Microssatélites/genética , Peru
11.
Antimicrob Agents Chemother ; 59(1): 734-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25403659

RESUMO

Plasmodium falciparum Pfcrt-76 and Pfmdr1-86 gene polymorphisms were determined during a clinical trial in Burkina Faso comparing the efficacies of dihydroartemisinin-piperaquine (DHA-PPQ) and artemether-lumefantrine (AL). Significant selection of Pfcrt-K76 was observed after exposure to AL and DHA-PPQ, as well as selection of Pfmdr1-N86 after AL but not DHA-PPQ treatment, suggesting reverse selection on the Pfcrt gene by PPQ. These results support the rational use of DHA-PPQ in settings where chloroquine (CQ) resistance is high.


Assuntos
Antimaníacos/uso terapêutico , Artemisininas/uso terapêutico , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Quinolinas/uso terapêutico , Antimaníacos/administração & dosagem , Combinação Arteméter e Lumefantrina , Artemisininas/administração & dosagem , Burkina Faso/epidemiologia , Combinação de Medicamentos , Resistência a Medicamentos/genética , Variação Genética/efeitos dos fármacos , Variação Genética/genética , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/administração & dosagem
12.
Malar J ; 13: 8, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393454

RESUMO

BACKGROUND: Despite the large burden of Plasmodium vivax, little is known about its transmission dynamics. This study explored the population structure and spatio-temporal dynamics of P. vivax recurrent infections after radical cure in a two-year cohort study carried out in a rural community of the Peruvian Amazon. METHODS: A total of 37 P. vivax participants recruited in San Carlos community (Peru) between April and December 2008 were treated radically with chloroquine and primaquine and followed up monthly for two years with systematic blood sampling. All samples were screened for malaria parasites and subsequently all P. vivax infections genotyped using 15 microsatellites. Parasite population structure and dynamics were determined by computing different genetic indices and using spatio-temporal statistics. RESULTS: After radical cure, 76% of the study participants experienced one or more recurrent P. vivax infections, most of them sub-patent and asymptomatic. The parasite population displayed limited genetic diversity (He = 0.49) and clonal structure, with most infections (84%) being monoclonal. Spatio-temporal clusters of specific haplotypes were found throughout the study and persistence of highly frequent haplotypes were observed over several months within the same participants/households. CONCLUSIONS: In San Carlos community, P. vivax recurrences were commonly observed after radical treatment, and characterized by asymptomatic, sub-patent and clustered infections (within and between individuals from a few neighbouring households). Moreover low genetic diversity as well as parasite inbreeding are likely to define a clonal parasite population which has important implications on the malaria epidemiology of the study area.


Assuntos
Variação Genética , Malária Vivax/epidemiologia , Malária Vivax/transmissão , Plasmodium vivax/genética , Adolescente , Adulto , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Cloroquina/uso terapêutico , Estudos de Coortes , Feminino , Haplótipos , Humanos , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Peru/epidemiologia , Reação em Cadeia da Polimerase , Primaquina/uso terapêutico , População Rural , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...