Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517470

RESUMO

Interferon regulatory factor 1 (IRF1) can promote antitumor immunity. However, we have shown previously that in the tumor cell, IRF1 can promote tumor growth, and IRF1-deficient tumor cells exhibit severely restricted tumor growth in several syngeneic mouse tumor models. Here, we investigate the potential of functionally modulating IRF1 to reduce tumor progression and prolong survival. Using inducible IRF1 expression, we established that it is possible to regulate IRF1 expression to modulate tumor progression in established B16-F10 tumors. Expression of IRF2, which is a functional antagonist of IRF1, down-regulated IFN-induced expression of inhibitory ligands, up-regulated MHC-related molecules, and slowed tumor growth and extended survival. We characterized the functional domain(s) of IRF2 needed for this antitumor activity, showing that a full-length IRF2 was required for its antitumor functions. Finally, using an oncolytic vaccinia virus as a delivery platform, we showed that IRF2-expressing vaccinia virus suppressed tumor progression and prolonged survival in multiple tumor models. These results suggest the potency of targeting IRF1 and using IRF2 to modulate immunotherapy.

2.
Nat Immunol ; 25(2): 206-217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238609

RESUMO

This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.


Assuntos
Transdução de Sinais , Linfócitos T , Transdução de Sinais/fisiologia , Diferenciação Celular , Ativação Linfocitária
3.
Trends Cancer ; 10(2): 135-146, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37880008

RESUMO

Oncolytic viruses (OVs), viruses engineered to lyse tumor cells, work hand in hand with the immune response. While for decades the field isolated lytic capability and viral spread to increase response to virotherapy, there is now a wealth of research that demonstrates the importance of immunity in the OV mechanism of action. In this review, we will cover how OVs interact with the innate immune system to fully activate the adaptive immune system and yield exceptional tumor clearances as well as look forward at combination therapies which can improve clinical responses.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/genética , Imunidade Adaptativa , Neoplasias/patologia , Terapia Combinada
4.
Cell Metab ; 35(12): 2101-2103, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056428

RESUMO

The malate shuttle is known to maintain the balance of NAD+/NADH between the cytosol and mitochondria. However, in Tex cells, it primarily detoxifies ammonia (via GOT1-mediated production of 2-KG in an atypical reaction) and provides longevity to chronic-infection-induced Tex cells against ammonia-induced cell death.


Assuntos
Amônia , Malatos , Malatos/metabolismo , Amônia/metabolismo , Linfócitos T/metabolismo , Oxirredução , Mitocôndrias/metabolismo , Citosol/metabolismo , NAD/metabolismo , Ácido Aspártico/metabolismo , Malato Desidrogenase/metabolismo
5.
PLoS Pathog ; 19(11): e1011719, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939149

RESUMO

Clinical studies report that viral infections promote acute or chronic bacterial infections at multiple host sites. These viral-bacterial co-infections are widely linked to more severe clinical outcomes. In experimental models in vitro and in vivo, virus-induced interferon responses can augment host susceptibility to secondary bacterial infection. Here, we used a cell-based screen to assess 389 interferon-stimulated genes (ISGs) for their ability to induce chronic Pseudomonas aeruginosa infection. We identified and validated five ISGs that were sufficient to promote bacterial infection. Furthermore, we dissected the mechanism of action of hexokinase 2 (HK2), a gene involved in the induction of aerobic glycolysis, commonly known as the Warburg effect. We report that HK2 upregulation mediates the induction of Warburg effect and secretion of L-lactate, which enhances chronic P. aeruginosa infection. These findings elucidate how the antiviral immune response renders the host susceptible to secondary bacterial infection, revealing potential strategies for viral-bacterial co-infection treatment.


Assuntos
Infecções Bacterianas , Coinfecção , Viroses , Vírus , Humanos , Interferons/metabolismo , Vírus/metabolismo
6.
mBio ; 14(5): e0086323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772820

RESUMO

IMPORTANCE: Miscommunication of antiviral and antibacterial immune signals drives worsened morbidity and mortality during respiratory viral-bacterial coinfections. Extracellular vesicles (EVs) are a form of intercellular communication with broad implications during infection, and here we show that epithelium-derived EVs released during the antiviral response impair the antibacterial activity of macrophages, an innate immune cell crucial for bacterial control in the airway. Macrophages exposed to antiviral EVs display reduced clearance of Staphylococcus aureus as well as altered inflammatory signaling and anti-inflammatory metabolic reprogramming, thus revealing EVs as a source of dysregulated epithelium-macrophage crosstalk during coinfection. As effective epithelium-macrophage communication is critical in mounting an appropriate immune response, this novel observation of epithelium-macrophage crosstalk shaping macrophage metabolism and antimicrobial function provides exciting new insight and improves our understanding of immune dysfunction during respiratory coinfections.


Assuntos
Coinfecção , Vesículas Extracelulares , Infecções Estafilocócicas , Humanos , Coinfecção/metabolismo , Macrófagos , Infecções Estafilocócicas/metabolismo , Antibacterianos/metabolismo , Antivirais/metabolismo
7.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37552475

RESUMO

While checkpoint blockade immunotherapies have widespread success, they rely on a responsive immune infiltrate; as such, treatments enhancing immune infiltration and preventing immunosuppression are of critical need. We previously generated αPD-1 resistant variants of the murine HNSCC model MEER. While entirely αPD-1 resistant, these tumors regress after single dose of oncolytic vaccinia virus (VV). We then generated a VV-resistant MEER line to dissect the immunologic features of sensitive and resistant tumors. While treatment of both tumor types induced immune infiltration and IFNγ, we found a defining feature of resistance was elevation of immunosuppressive cytokines like TGFß, which blunted IFNγ signaling, especially in regulatory T cells. We engineered VV to express a genetically encoded TGFßRII inhibitor. Inhibitor-expressing VV produced regressions in resistant tumor models and showed impressive synergy with checkpoint blockade. Importantly, tumor-specific, viral delivery of TGFß inhibition had no toxicities associated with systemic TGFß/TGFßR inhibition. Our data suggest that aside from stimulating immune infiltration, oncolytic viruses are attractive means to deliver agents to limit immunosuppression in cancer.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Linhagem Celular Tumoral , Imunossupressores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Microambiente Tumoral , Vaccinia virus/genética
8.
Front Oncol ; 13: 1075823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397389

RESUMO

Background: Pre-clinical studies have shown that metformin reduces intratumoral hypoxia, improves T-cell function, and increases sensitivity to PD-1 blockade, and metformin exposure has been associated with improved clinical outcomes in various types of cancer. However, the impact of this drug in diabetic melanoma patients has not yet been fully elucidated. Methods: We reviewed 4,790 diabetic patients with stage I-IV cutaneous melanoma treated at the UPMC-Hillman Cancer Center and Memorial Sloan Kettering Cancer Center between 1996-2020. The primary endpoints included recurrence rates, progression free survival (PFS), and overall survival (OS) with and without metformin exposure. Tabulated variables included BRAF mutational status, immunotherapy (IMT) by type, and incidence of brain metastases. Results: The five-year incidence of recurrence in stage I/II patients was significantly reduced with metformin exposure (32.3% vs 47.7%, p=0.012). The five-year recurrence rate for stage III patients was also significantly reduced (58.3% vs 77.3%, p=0.013) in the metformin cohort. OS was numerically increased in nearly all stages exposed to metformin, though this did not reach statistical significance. The incidence of brain metastases was significantly lower in the metformin cohort (8.9% vs 14.6%, p=0.039). Conclusion: This is the first study to demonstrate significantly improved clinical outcomes in diabetic melanoma patients exposed to metformin. Overall, these results provide further rationale for ongoing clinical trials studying the potential augmentation of checkpoint blockade with metformin in advanced melanoma.

9.
Cell Mol Gastroenterol Hepatol ; 16(2): 287-316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172822

RESUMO

BACKGROUND & AIMS: The colonic epithelium requires continuous renewal by crypt resident intestinal stem cells (ISCs) and transit-amplifying (TA) cells to maintain barrier integrity, especially after inflammatory damage. The diet of high-income countries contains increasing amounts of sugar, such as sucrose. ISCs and TA cells are sensitive to dietary metabolites, but whether excess sugar affects their function directly is unknown. METHODS: Here, we used a combination of 3-dimensional colonoids and a mouse model of colon damage/repair (dextran sodium sulfate colitis) to show the direct effect of sugar on the transcriptional, metabolic, and regenerative functions of crypt ISCs and TA cells. RESULTS: We show that high-sugar conditions directly limit murine and human colonoid development, which is associated with a reduction in the expression of proliferative genes, adenosine triphosphate levels, and the accumulation of pyruvate. Treatment of colonoids with dichloroacetate, which forces pyruvate into the tricarboxylic acid cycle, restored their growth. In concert, dextran sodium sulfate treatment of mice fed a high-sugar diet led to massive irreparable damage that was independent of the colonic microbiota and its metabolites. Analyses on crypt cells from high-sucrose-fed mice showed a reduction in the expression of ISC genes, impeded proliferative potential, and increased glycolytic potential without a commensurate increase in aerobic respiration. CONCLUSIONS: Taken together, our results indicate that short-term, excess dietary sucrose can directly modulate intestinal crypt cell metabolism and inhibit ISC/TA cell regenerative proliferation. This knowledge may inform diets that better support the treatment of acute intestinal injury.


Assuntos
Colite , Açúcares da Dieta , Camundongos , Humanos , Animais , Dextranos , Colite/metabolismo , Piruvatos
11.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36914208

RESUMO

BACKGROUND: Cellular immunotherapies for cancer represent a means by which a patient's immune system can be augmented with high numbers of tumor-specific T cells. Chimeric antigen receptor (CAR) therapy involves genetic engineering to 'redirect' peripheral T cells to tumor targets, showing remarkable potency in blood cancers. However, due to several resistance mechanisms, CAR-T cell therapies remain ineffective in solid tumors. We and others have shown the tumor microenvironment harbors a distinct metabolic landscape that produces a barrier to immune cell function. Further, altered differentiation of T cells within tumors induces defects in mitochondrial biogenesis, resulting in severe cell-intrinsic metabolic deficiencies. While we and others have shown murine T cell receptor (TCR)-transgenic cells can be improved through enhanced mitochondrial biogenesis, we sought to determine whether human CAR-T cells could be enabled through a metabolic reprogramming approach. MATERIALS AND METHODS: Anti-EGFR CAR-T cells were infused in NSG mice which bore A549 tumors. The tumor infiltrating lymphocytes were analyzed for exhaustion and metabolic deficiencies. Lentiviruses carrying PPAR-gamma coactivator 1α (PGC-1α), PGC-1αS571A and NT-PGC-1α constructs were used to co-transduce T cells with anti-EGFR CAR lentiviruses. We performed metabolic analysis via flow cytometry and Seahorse analysis in vitro as well as RNA sequencing. Finally, we treated therapeutically A549-carrying NSG mice with either PGC-1α or NT-PGC-1α anti-EGFR CAR-T cells. We also analyzed the differences in the tumor-infiltrating CAR-T cells when PGC-1α is co-expressed. RESULTS: Here, in this study, we show that an inhibition resistant, engineered version of PGC-1α, can metabolically reprogram human CAR-T cells. Transcriptomic profiling of PGC-1α-transduced CAR-T cells showed this approach effectively induced mitochondrial biogenesis, but also upregulated programs associated with effector functions. Treatment of immunodeficient animals bearing human solid tumors with these cells resulted in substantially improved in vivo efficacy. In contrast, a truncated version of PGC-1α, NT-PGC-1α, did not improve the in vivo outcomes. CONCLUSIONS: Our data further support a role for metabolic reprogramming in immunomodulatory treatments and highlight the utility of genes like PGC-1α as attractive candidates to include in cargo along with chimeric receptors or TCRs for cell therapy of solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Microambiente Tumoral
12.
Oral Oncol ; 140: 106363, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963232

RESUMO

OBJECTIVES: Head and neck squamous cell carcinoma (HNSCC) causes severe pain and opioids, the mainstay of pain management, may have immunomodulatory effects. We evaluated the effect of opioids on immunotherapy efficacy in recurrent/metastatic (R/M) HNSCC patients. MATERIALS AND METHODS: In a retrospective study of 66 R/M HNSCC patients from 2015 to 2020, opioid dosage, calculated as mean morphine milligram equivalent per day, was assessed on the day of anti-PD-1 monoclonal antibody (mAb) treatment and most recent prior visit. Intratumoral T cells were evaluated by single cell RNAseq and immunohistochemistry prior to treatment. Univariable and multivariable Cox proportional hazards and logistic regression models were used to estimate the association between opioid usage, progression-free survival (PFS), overall survival (OS), disease control rate. RESULTS: Patients were 79% male, 35% oropharynx, 35% oral cavity, 40% locoregional recurrence, and 56% platinum failure. Higher opioid dosage by continuous variable was significantly associated with lower PFS (p = 0.016) and OS (p < 0.001). In multivariable analysis, including platinum failure status and PD-L1, higher opioids were associated with lower OS. Opioid usage by categorical variable was associated with significantly lower intratumoral CD8+ T cells. Opioid receptor, OPRM1, expression was identified in intratumoral and circulating T cells. CONCLUSIONS: In our study cohort of anti-PD-1 mAb treatment in R/M HNSCC patients, higher opioids were associated with significantly lower PFS and OS and lower CD8+ T cells in the tumor microenvironment. To our knowledge, this is the first analysis in R/M HNSCC patients and further research into the clinical and biologic effect of opioids is warranted.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Masculino , Feminino , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Analgésicos Opioides/uso terapêutico , Linfócitos T CD8-Positivos/metabolismo , Estudos Retrospectivos , Platina/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/etiologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Imunoterapia/efeitos adversos , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral
13.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36810257

RESUMO

Inhibitors of the DNA damage signaling kinase ATR increase tumor cell killing by chemotherapies that target DNA replication forks but also kill rapidly proliferating immune cells including activated T cells. Nevertheless, ATR inhibitor (ATRi) and radiotherapy (RT) can be combined to generate CD8+ T cell-dependent antitumor responses in mouse models. To determine the optimal schedule of ATRi and RT, we determined the impact of short-course versus prolonged daily treatment with AZD6738 (ATRi) on responses to RT (days 1-2). Short-course ATRi (days 1-3) plus RT caused expansion of tumor antigen-specific, effector CD8+ T cells in the tumor-draining lymph node (DLN) at 1 week after RT. This was preceded by acute decreases in proliferating tumor-infiltrating and peripheral T cells and a rapid proliferative rebound after ATRi cessation, increased inflammatory signaling (IFN-ß, chemokines, particularly CXCL10) in tumors, and an accumulation of inflammatory cells in the DLN. In contrast, prolonged ATRi (days 1-9) prevented the expansion of tumor antigen-specific, effector CD8+ T cells in the DLN, and entirely abolished the therapeutic benefit of short-course ATRi with RT and anti-PD-L1. Our data argue that ATRi cessation is essential to allow CD8+ T cell responses to both RT and immune checkpoint inhibitors.


Assuntos
Neoplasias , Animais , Camundongos , Neoplasias/patologia , Sulfonamidas , Imunidade , Antígenos de Neoplasias
14.
Nat Immunol ; 24(2): 267-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543958

RESUMO

CD8+ T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tTex) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy. Here we show that intratumoral CD8+ tTex cells possess transcriptional features of CD4+Foxp3+ regulatory T cells and are similarly capable of directly suppressing T cell proliferation ex vivo. tTex cell suppression requires CD39, which generates immunosuppressive adenosine. Restricted deletion of CD39 in endogenous CD8+ T cells resulted in slowed tumor progression, improved immunotherapy responsiveness and enhanced infiltration of transferred tumor-specific T cells. CD39 is induced on tTex cells by tumor hypoxia, thus mitigation of hypoxia limits tTex suppression. Together, these data suggest tTex cells are an important regulatory population in cancer and strategies to limit their generation, reprogram their immunosuppressive state or remove them from the TME might potentiate immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Antígenos CD , Hipóxia , Neoplasias/terapia , Linfócitos T Reguladores , Microambiente Tumoral
15.
Clin Cancer Res ; 29(1): 154-164, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166093

RESUMO

PURPOSE: Overweight/obese (OW/OB) patients with metastatic melanoma unexpectedly have improved outcomes with immune checkpoint inhibitors (ICI) and BRAF-targeted therapies. The mechanism(s) underlying this association remain unclear, thus we assessed the integrated molecular, metabolic, and immune profile of tumors, as well as gut microbiome features, for associations with patient body mass index (BMI). EXPERIMENTAL DESIGN: Associations between BMI [normal (NL < 25) or OW/OB (BMI ≥ 25)] and tumor or microbiome characteristics were examined in specimens from 782 patients with metastatic melanoma across 7 cohorts. DNA associations were evaluated in The Cancer Genome Atlas cohort. RNA sequencing from 4 cohorts (n = 357) was batch corrected and gene set enrichment analysis (GSEA) by BMI category was performed. Metabolic profiling was conducted in a subset of patients (x = 36) by LC/MS, and in flow-sorted melanoma tumor cells (x = 37) and patient-derived melanoma cell lines (x = 17) using the Seahorse XF assay. Gut microbiome features were examined in an independent cohort (n = 371). RESULTS: DNA mutations and copy number variations were not associated with BMI. GSEA demonstrated that tumors from OW/OB patients were metabolically quiescent, with downregulation of oxidative phosphorylation and multiple other metabolic pathways. Direct metabolite analysis and functional metabolic profiling confirmed decreased central carbon metabolism in OW/OB metastatic melanoma tumors and patient-derived cell lines. The overall structure, diversity, and taxonomy of the fecal microbiome did not differ by BMI. CONCLUSIONS: These findings suggest that the host metabolic phenotype influences melanoma metabolism and provide insight into the improved outcomes observed in OW/OB patients with metastatic melanoma treated with ICIs and targeted therapies. See related commentary by Smalley, p. 5.


Assuntos
Melanoma , Segunda Neoplasia Primária , Humanos , Fatores de Risco , Variações do Número de Cópias de DNA , Obesidade/complicações , Sobrepeso , Melanoma/genética , Melanoma/complicações , Índice de Massa Corporal
16.
Oncoimmunology ; 11(1): 2131229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275862

RESUMO

The modeling of chimeric antigen receptor (CAR) T cell therapies has been mostly focused on immunodeficient models. However, there are many advantages in studying CAR-T cell biology in an immunocompetent setting. We generated a fully murine CAR targeting CD105 (endoglin), a component of the TGFß receptor expressed on the surface of certain solid tumors and acute leukemias. CD105-targeted CAR-T cells can be grown from various murine backgrounds, tracked in vivo by congenic marks, and be activated by CD105 in isolation or expressed by tumor cells. CD105-targeted CAR-T cells were toxic at higher doses but proved safe in lower doses and modestly effective in treating wild-type B16 melanoma-bearing mice. CAR-T cells infiltrating the tumor expressed high levels of exhaustion markers and exhibited metabolic insufficiencies. We also generated a human CD105 CAR, which was efficacious in treating human melanoma and acute myeloid leukemia in vivo. Our work details a new murine model of CAR-T cell therapy that can be used from immunologists to further our understanding of CAR-T cell biology. We also set the foundation for further exploration of CD105 as a possible human CAR-T cell target.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Endoglina/metabolismo , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Linfócitos T , Fator de Crescimento Transformador beta/metabolismo
17.
Immunology ; 167(2): 123, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36168718
18.
Cell Rep ; 40(12): 111371, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130512

RESUMO

ATR kinase is a central regulator of the DNA damage response (DDR) and cell cycle checkpoints. ATR kinase inhibitors (ATRi's) combine with radiation to generate CD8+ T cell-dependent responses in mouse models of cancer. We show that ATRi's induce cyclin-dependent kinase 1 (CDK1)-dependent origin firing across active replicons in CD8+ T cells activated ex vivo while simultaneously decreasing the activity of rate-limiting enzymes for nucleotide biosynthesis. These pleiotropic effects of ATRi induce deoxyuridine (dU) contamination in genomic DNA, R loops, RNA-DNA polymerase collisions, and interferon-α/ß (IFN-α/ß). Remarkably, thymidine rescues ATRi-induced dU contamination and partially rescues death and IFN-α/ß expression in proliferating CD8+ T cells. Thymidine also partially rescues ATRi-induced cancer cell death. We propose that ATRi-induced dU contamination contributes to dose-limiting leukocytopenia and inflammation in the clinic and CD8+ T cell-dependent anti-tumor responses in mouse models. We conclude that ATR is essential to limit dU contamination in genomic DNA and IFN-α/ß expression.


Assuntos
Linfócitos T CD8-Positivos , Proteína Quinase CDC2 , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Proteína Quinase CDC2/metabolismo , Morte Celular , Linhagem Celular Tumoral , DNA , Dano ao DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiuridina , Genômica , Interferon-alfa/metabolismo , Interferon beta , Camundongos , Nucleotídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA , Timidina/farmacologia
19.
Sci Immunol ; 7(74): eabj9123, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930654

RESUMO

Response rates to immunotherapy in solid tumors remain low due in part to the elevated prevalence of terminally exhausted T cells, a hypofunctional differentiation state induced through persistent antigen and stress signaling. However, the mechanisms promoting progression to terminal exhaustion in the tumor remain undefined. Using the low-input chromatin immunoprecipitation sequencing method CUT&RUN, we profiled the histone modification landscape of tumor-infiltrating CD8+ T cells throughout differentiation. We found that terminally exhausted T cells had unexpected chromatin features that limit their transcriptional potential. Terminally exhausted T cells had a substantial fraction of active chromatin, including active enhancers enriched for bZIP/AP-1 transcription factor motifs that lacked correlated gene expression, which was restored by immunotherapeutic costimulatory signaling. Reduced transcriptional potential was also driven by an increase in histone bivalency, which we linked directly to hypoxia exposure. Enforced expression of the hypoxia-insensitive histone demethylase Kdm6b was sufficient to overcome hypoxia, increase function, and promote antitumor immunity. Our study reveals the specific epigenetic changes mediated by histone modifications during T cell differentiation that support exhaustion in cancer, highlighting that their altered function is driven by improper costimulatory signals and environmental factors. These data suggest that even terminally exhausted T cells may remain competent for transcription in settings of increased costimulatory signaling and reduced hypoxia.


Assuntos
Cromatina , Neoplasias , Linfócitos T CD8-Positivos , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Microambiente Tumoral
20.
Immunology ; 166(4): 425-428, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35851473
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...