Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929392

RESUMO

Hemolysis is a common cause of errors in laboratory tests as it affects blood parameters and leads to a positive or negative bias. This study aims to examine the relationship between the level of hemolysis (expressed as cell-free hemoglobin concentration, g/L) and the variability of metabolic and endocrine parameters and to determine the threshold level of hemolysis that causes an analytically and clinically significant bias for the twenty most frequently examined blood parameters in cows. Paired blood samples of 10 mL each were obtained from 30 cows. One was subjected to mechanical trauma and plasma was extracted directly from the other. Hemolyzed and non-hemolyzed samples from the same animal were mixed to obtain final samples with cell-free hemoglobin concentrations of 0, 1, 2, 4, 6, 8, and 10 g/L. Metabolic and endocrine parameters were measured in the samples and their deviation and the linear equation between the level of hemolysis and the deviation were determined. The following threshold values of hemolysis were determined, which correspond to the acceptable analytical (lower value) and clinical (upper value) levels of parameter variability: BHB 0.96 and 4.81; NEFA 0.39 and 3.31; GLU 0.38 and 3.90; ALB 1.12 and 6.11; TPROT 1.40 and 6.80; UREA 6.62 and 20.1; TBIL 0.75 and 5.65; AST 0.11 and 2.18; GGT 1.71 and 8.90, LDH 0.01 and 0.11, ALP 0.97 and 2.95; TGC 1.56 and 15.5; CHOL 1.29 and 8.56; Ca 5.68 and 25.7; P 0.57 and 8.43; Mg 1.10 and 8.47; INS 1.15 and 3.89; T3 8.19 and 15.6; T4 8.97 and 18.5; and CORT 2.78 and 11.22 g/L cell-free hemoglobin. Three decision levels are available for each metabolic and endocrine parameter: if hemolysis is below the lower (analytical) threshold value, results can be reported without restriction; if hemolysis is between the lower and upper thresholds, the results can be issued with guidance in the form of corrective linear equations; and if hemolysis is above the upper (clinical) threshold, the results and sample must be discarded. This method contributes to an optimal approach to hemolysis interference with metabolic profile parameters in blood samples from cows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA