Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273541

RESUMO

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Assuntos
Ecossistema , Nematoides , Animais , Solo , Camada de Gelo , Biodiversidade
2.
Sci Total Environ ; 902: 165998, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536589

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) were studied in the soils of three proglacial areas in France (Noir and Chardon Glaciers) and Italy (Miage Glacier). PAH contents, PAH stocks and PAH contents normalized to the total organic carbon contents (PAHs/TOC ratio) were investigated along proglacial soil chronosequences to infer their evolutions with soil age (from 3 to 4200 years), where the PAH contamination was only related to long-range atmospheric transport. Evolutions of PAH and TOC contents, PAHs/TOC ratio and PAH stock were fitted with exponential and logarithmic relations. For the three proglacial areas, PAH contents increased rapidly during the first 150 years of soil development, ranged from 4 to 152 ng·g-1, and showed a strong relationship with total organic carbon (TOC) contents (r = 0.83, p < 0.05). The joint increase of PAH and TOC contents suggested that PAH accumulation in soils were not only driven by PAH inputs but also by the capacity of soils to store these contaminants. PAH contents in the oldest soils (from 1200 BCE and 2200 BCE) were similar than for soils from 1850 CE. The period 1850-2019 CE corresponded to a decrease in the PAHs/TOC ratio suggesting both a faster accumulation of TOC than PAHs and a dilution effect of PAHs already present in soils. For the oldest soils, the PAHs/TOC ratio appeared similar to those for soils from 1850 CE, with values ranging from 0.48 to 2.06 ng·mg-1, suggesting an equilibrium between both parameters for soils older than 170 years. Finally, PAH stocks ranged from 0.41 mg·m-2 to 6.80 mg·m-2 in the youngest and oldest soils, respectively. These results do not allow us to identify the same period of greatest emission as other studies (estimated ~1960), but they revealed changes in the capacity of soils to store these pollutants.

3.
Reg Environ Change ; 21(4): 120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776785

RESUMO

Climate change strongly affects mountain tourism activities. Glacier tourism is highly affected by the retreat of glaciers. However, research on the effects and adaptations of glacier tourism to climate change is scarce in Europe. By analysing the glacio-geomorphological literature, semi-structured interviews, and observations at six major Alpine glacier tourism sites, we aim to identify the physical processes that affect glacier tourism in the Alps and how stakeholders perceive and adapt to them. The results reveal that glacier retreat and the associated paraglacial dynamics and permafrost warming strongly affect glacier tourism. Stakeholders perceive six main issues: management, itinerary, infrastructure, attractiveness, safety, and activity. In response, they have been adapting with eight strategies: management change, technical means implementation, mitigation, diversification, access and itinerary maintenance, heritage development, planning, and implementation of transformation projects. These strategies are discussed regarding their relevance to tourism model transition to guarantee future sustainability. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10113-021-01849-0.

4.
Sci Rep ; 10(1): 17330, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060682

RESUMO

Since the end of the Little Ice Age, the west face of the Drus (Mont Blanc massif, France) has been affected by a retrogressive erosion dynamic marked by large rockfall events. From the 1950s onwards, the rock failure frequency gradually increased until the large rockfall event (292,680 m3) of June 2005, which made the Bonatti Pillar disappear. Aiming to characterize the rock failure activity following this major event, which may be related to permafrost warming, the granitic rock face was scanned each autumn between October 2005 and September 2016 using medium- and long-range terrestrial laser scanners. All the point clouds were successively compared to establish a rockfall source inventory and determine a volume-frequency relationship. Eleven years of monitoring revealed a phase of rock failure activity decay until September 2008, a destabilization phase between September 2008 and November 2011, and a new phase of rock failure activity decay from November 2011 to September 2016. The destabilization phase was marked by three major rockfall events covering a total volume of 61,494 m3, resulting in the progressive collapse of a new pillar located in the northern part of the June 2005 rockfall scar. In the same way as for the Bonatti Pillar, rock failure instability propagated upward with increasing volumes. In addition to these major events, 304 rockfall sources ranging from 0.002 to 476 m3 were detected between 2005 and 2016. The temporal evolution of rock failure activity reveals that after a major event, the number of rockfall sources and the eroded volume both follow a rapid decrease. The rock failure activity is characterized by an exponential decay during the period following the major event and by a power-law decay for the eroded volume. The power law describing the distribution of the source volumes detected between 2005 and 2016 indicates an exponent of 0.48 and an average rock failure activity larger of more than six events larger than 1 m3 per year. Over the 1905-2016 period, a total of 426,611 m3 of rock collapsed from the Drus west face, indicating a very high rock wall retreat rate of 14.4 mm year-1 over a surface of 266,700 m2. Averaged over a time window of 1000 years, the long-term retreat rate derived from the frequency density integration of rock failure volumes is 2.9 mm year-1. Despite difficulty in accessing and monitoring the site, our study demonstrates that long-term surveys of high-elevation rock faces are possible and provide valuable information that helps improve our understanding of landscape evolution in mountainous settings subject to permafrost warming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...