Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e11270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34141463

RESUMO

The Convention on Biological Diversity (CBD) pathways classification framework used in the implementation of the European Union's (EU) Regulation 1143/2014 on invasive alien species (IAS Regulation) has recently been adopted by the European Alien Species Information Network (EASIN), the official information system supporting the implementation of the IAS Regulation. In the current paper, the result of an alignment of the primary introduction pathways of all alien plants in Europe included in the EASIN catalogue is presented, based on the CBD framework. In total, 6,250 alien plant taxa (marine plants excluded), both alien to Europe (native range outside Europe) and alien in Europe (native range partially in Europe) are reported. Altogether 5,175 plant taxa had their primary introduction pathway aligned based on the CBD framework, while for the rest the pathway remains unknown. In addition, the taxonomy, year and country of its first record in the wild are provided for each taxon. Our analyses reveal that the main primary introduction pathways of alien plants into Europe are linked to accidental escapes from ornamental and horticultural activities. Northwestern European countries seem to act as the main gateway areas of alien plants into Europe. Recent first observations of new alien taxa growing spontaneously exhibit a contemporary accelerating trend for plants alien to Europe, particularly linked to ornamental and horticultural activities. On the other hand, the number of new plants alien in Europe seems to have stabilized over the last few decades. The present work can assist in the prioritization of introduction pathways control, with the target of slowing down the rate of alien plants introductions into Europe, following also the requirements of the IAS Regulation.

2.
Sci Total Environ ; 601-602: 461-468, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575824

RESUMO

This paper aims to determine the main factors that shape the spatial patterns of alien plant species occurrence across Natura 2000 Special Areas of Conservation (SACs) in Greece, and quantify their influence. A series of spatial analysis techniques for the development of a spatial database of the factors involved, followed by a boosted negative binomial Generalised Additive Model for location scale and shape, were implemented. Native plant species richness, topography and hydrography, human population density, and a spatial preference to the northern-western sites are the key factors that explain the variation in the occurrence of alien plant species. Native plant species richness and human population density have a positive effect on alien plant species presence, while topography aspects, such as elevation and slope, and the distance from the hydrographical network a negative one. All factors are indirectly linked to propagule pressure emphasizing the importance of human activities for the efforts on managing protected areas.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas , Plantas , Monitoramento Ambiental , Grécia , Dinâmica Populacional
3.
PLoS One ; 8(11): e79174, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244443

RESUMO

The objective of this work was to compare and contrast the patterns of alien plant invasions in the world's five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period.


Assuntos
Ecossistema , Espécies Introduzidas , Plantas , Humanos , Região do Mediterrâneo
4.
Proc Natl Acad Sci U S A ; 106(51): 21721-5, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-20007367

RESUMO

Human activities have altered the composition of biotas through two fundamental processes: native extinctions and alien introductions. Both processes affect the taxonomic (i.e., species identity) and phylogenetic (i.e., species evolutionary history) structure of species assemblages. However, it is not known what the relative magnitude of these effects is at large spatial scales. Here we analyze the large-scale effects of plant extinctions and introductions on taxonomic and phylogenetic diversity of floras across Europe, using data from 23 regions. Considering both native losses and alien additions in concert reveals that plant invasions since AD 1500 exceeded extinctions, resulting in (i) increased taxonomic diversity (i.e., species richness) but decreased phylogenetic diversity within European regions, and (ii) increased taxonomic and phylogenetic similarity among European regions. Those extinct species were phylogenetically and taxonomically unique and typical of individual regions, and extinctions usually were not continent-wide and therefore led to differentiation. By contrast, because introduced alien species tended to be closely related to native species, the floristic differentiation due to species extinction was lessened by taxonomic and phylogenetic homogenization effects. This was especially due to species that are alien to a region but native to other parts of Europe. As a result, floras of many European regions have partly lost and will continue to lose their uniqueness. The results suggest that biodiversity needs to be assessed in terms of both species taxonomic and phylogenetic identity, but the latter is rarely used as a metric of the biodiversity dynamics.


Assuntos
Extinção Biológica , Filogenia , Plantas/classificação , Biodiversidade , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA