Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Animals (Basel) ; 14(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38473192

RESUMO

Reproductive biotechnologies can be used as a supporting tool, through gamete conservation and in vitro embryo production, in the preservation of invaluable and irreplaceable animal genetic resources. In the present study, immature mouflon cumulus-oocyte complexes (COCs) collected from ovariectomized female ovaries underwent short- or long-term conservation (24 h maintained in Earle's/Hank's (EH) medium or vitrification) under field conditions and afterwards transported to the laboratory where they were cultured for in vitro maturation (IVM) and assessed for oocyte meiotic competence and bioenergetic-oxidative status. Utilization of both storage techniques led to COC morphology preservation, as well as cumulus expansion and oocyte meiotic resumption after the IVM procedure. Quantitative bioenergetic-oxidative parameters were reduced in vitrified oocytes compared with EH ones. Immature COC storage needs to be optimized in both domesticated and non-domesticated sheep as a part of the strategy to avoid the loss of valuable genotypes of these animal species.

2.
Animals (Basel) ; 13(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508148

RESUMO

Gentile di Puglia (GdP) is an autochthonous sheep breed of Southern Italy included among ovine breeds threatened by genetic erosion and extinction risk, which have been given attention by local and international institutions, thus emphasizing the need for germplasm conservation actions. In the present study, two assisted reproduction approaches, finalized for GdP conservation, were performed: (1) on-farm reproductive efficiency evaluation, expressed as pregnancy rate (PR), twin pregnancy rate (tPR), and body condition score (BCS), for three consecutive breeding cycles and (2) pre-pubertal lambs' immature cumulus-oocyte complex (COC) retrieval, vitrification, in vitro maturation (IVM), and assessment of meiotic stage and bioenergetic-oxidative status compared with those of other Italian and European commercial breeds. PR and tPR were progressively reduced over time. In all clinical examination times, BCS was significantly lower in nonpregnant ewes compared with pregnant ones. Fresh GdP pre-pubertal lamb COCs achieved meiotic maturation and showed healthy bioenergetic-oxidative status after IVM. Vitrification reduced the oocyte maturation rate in all groups. However, mature oocytes retained their cytoplasmic maturity, expressed as a mitochondria distribution pattern and activity, indicating promising developmental competence. In conclusion, clinical- and biotechnological-assisted reproduction approaches can support conservation strategies of GdP and other local sheep breeds in Southern Italy.

3.
Biology (Basel) ; 12(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829526

RESUMO

Cadmium (Cd), a highly toxic pollutant, impairs oocyte fertilization, through oxidative damage on cumulus cells (CCs). This study analysed the transcriptomic profile of CCs of cumulus-oocyte complexes (COCs) from adult and prepubertal sheep, exposed to Cd nanomolar concentration during in vitro maturation. In both age-groups, CCs of matured oocytes underwent RNA-seq, data analysis and validation. Differentially expressed genes (DEGs) were identified in adult (n = 99 DEGs) and prepubertal (n = 18 DEGs) CCs upon Cd exposure. Transcriptomes of adult CCs clustered separately between Cd-exposed and control samples, whereas prepubertal ones did not as observed by Principal Component Analysis. The transcriptomic signature of Cd-induced CC toxicity was identified by gene annotation and literature search. Genes associated with previous studies on ovarian functions and/or Cd effects were confirmed and new genes were identified, thus implementing the knowledge on their involvement in such processes. Enrichment and validation analysis showed that, in adult CCs, Cd acted as endocrine disruptor on DEGs involved in hormone biosynthesis, cumulus expansion, regulation of cell signalling, growth and differentiation and oocyte maturation, whereas in prepubertal CCs, Cd affected DEGs involved in CC development and viability and CC-oocyte communications. In conclusion, these DEGs could be used as valuable non-invasive biomarkers for oocyte competence.

4.
Cells ; 11(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429039

RESUMO

In conventional assisted reproductive technologies (ARTs), oocytes are in vitro cultured in static conditions. Instead, dynamic systems could better mimic the physiological in vivo environment. In this study, a millifluidic in vitro oocyte maturation (mIVM) system, in a transparent bioreactor integrated with 3D printed supports, was investigated and modeled thanks to computational fluid dynamic (CFD) and oxygen convection-reaction-diffusion (CRD) models. Cumulus-oocyte complexes (COCs) from slaughtered lambs were cultured for 24 h under static (controls) or dynamic IVM in absence (native) or presence of 3D-printed devices with different shapes and assembly modes, with/without alginate filling. Nuclear chromatin configuration, mitochondria distribution patterns, and activity of in vitro matured oocytes were assessed. The native dynamic mIVM significantly reduced the maturation rate compared to the static group (p < 0.001) and metaphase II (MII) oocytes showed impaired mitochondria distribution (p < 0.05) and activity (p < 0.001). When COCs were included in a combination of concave+ring support, particularly with alginate filling, oocyte maturation and mitochondria pattern were preserved, and bioenergetic/oxidative status was improved (p < 0.05) compared to controls. Results were supported by computational models demonstrating that, in mIVM in biocompatible inserts, COCs were protected from shear stresses while ensuring physiological oxygen diffusion replicating the one occurring in vivo from capillaries.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Ovário , Feminino , Ovinos , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/fisiologia , Oxigênio , Alginatos/farmacologia
5.
J Anim Sci Biotechnol ; 13(1): 83, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864507

RESUMO

BACKGROUND: Heavy metal cadmium (Cd) is a widespread environmental contaminant with a potential toxicity that might negatively affect female reproduction and fertility. It has been reported that Cd exposure impaired the quality of oocytes and led to a defective maturation and fertilization, through oxidative stress induction. Resveratrol (Res) is a natural polyphenol with strong antioxidant properties that exhibited protective role in preventing oocyte redox homeostasis disruption and quality decline. Here, we explored whether the addition of Res to in vitro maturation (IVM) medium might act as a protection against Cd-induced toxicity on ovine oocyte maturation and fertilization. Firstly, we evaluated the effect of supplementing IVM medium with two different Res concentrations (1 and 2 µmol/L) on nuclear maturation and fertilization of oocytes matured under CdCl2 (2 µmol/L) exposure. Therefore, the concentration of 1 µmol/L Res was selected to analyse the effects of this compound on intracellular ROS levels, mitochondrial (mt) distribution and activity, chromatin configuration, cytoskeleton morphology, cortical granules (CGs) distribution and mRNA expression of genes associated with cellular response to oxidative stress (i.e. SIRT1, SOD 1, GPX1, GSR, CAT) in Cd-exposed in vitro matured oocytes. RESULTS: We found that 1 µmol/L Res restored the reduced oocyte meiotic competence induced by Cd exposure as well as, Res sustained oocyte ability to be normally fertilized and decreased polyspermic fertilization at both tested concentrations. Moreover, we demonstrated that 1 µmol/L Res mitigated Cd-induced alterations of oocyte cytoplasmic maturation by reducing reactive oxygen species (ROS) accumulation, preventing mt dysfunction, maintaining the correct meiotic spindle and cortical F-actin assembly and the normal cortical granule distribution as well as up-regulating SIRT1, SOD1 and GPX1 genes. CONCLUSIONS: Taken together, our findings highlighted the beneficial influence exerted by Res in preventing Cd-induced disturbance of nuclear and cytoplasmic maturation and subsequent fertilization in ovine oocytes. Res treatment may help to establish defence strategies counteracting Cd-induced toxicity on the female gamete.

6.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35162971

RESUMO

H+/K+ ATPase Type 2 is an heteromeric membrane protein involved in cation transmembrane transport and consists of two subunits: a specific α subunit (ATP12A) and a non-specific ß subunit. The aim of this study was to demonstrate the presence and establish the localization of ATP12A in spermatozoa from Bubalus bubalis, Bos taurus and Ovis aries. Immunoblotting revealed, in all three species, a major band (100 kDa) corresponding to the expected molecular mass. The ATP12A immunolocalization pattern showed, consistently in the three species, a strong signal at the acrosome. These results, described here for the first time in spermatozoa, are consistent with those observed for the ß1 subunit of Na+/K+ ATPase, suggesting that the latter may assemble with the α subunit to produce a functional ATP12A dimer in sperm cells. The above scenario appeared to be nicely supported by 3D comparative modeling and interaction energy calculations. The expression of ATP12A during different stages of bovine sperm maturation progressively increased, moving from epididymis to deferent ducts. Based on overall results, we hypothesize that ATP12A may play a role in acrosome reactions. Further studies will be required in order to address the functional role of this target protein in sperm physiology.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio , Espermatozoides , Animais , Búfalos/metabolismo , Bovinos , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Transporte de Íons , Masculino , ATPase Trocadora de Sódio-Potássio/metabolismo , Espermatozoides/metabolismo
7.
Cells ; 10(6)2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200771

RESUMO

Juvenile in vitro embryo technology (JIVET) provides exciting opportunities in animal reproduction by reducing the generation intervals. Prepubertal oocytes are also relevant models for studies on oncofertility. However, current JIVET efficiency is still unpredictable, and further improvements are needed in order for it to be used on a large-scale level. This study applied bioengineering approaches to recreate: (1) the three-dimensional (3D) structure of the cumulus-oocyte complex (COC), by constructing-via bioprinting technologies-alginate-based microbeads (COC-microbeads) for 3D in vitro maturation (3D-IVM); (2) dynamic IVM conditions, by culturing the COC in a millifluidic bioreactor; and (3) an artificial follicular wall with basal membrane, by adding granulosa cells (GCs) and type I collagen (CI) during bioprinting. The results show that oocyte nuclear and cytoplasmic maturation, as well as blastocyst quality, were improved after 3D-IVM compared to 2D controls. The dynamic 3D-IVM did not enhance oocyte maturation, but it improved oocyte bioenergetics compared with static 3D-IVM. The computational model showed higher oxygen levels in the bioreactor with respect to the static well. Microbead enrichment with GCs and CI improved oocyte maturation and bioenergetics. In conclusion, this study demonstrated that bioengineering approaches that mimic the physiological follicle structure could be valuable tools to improve IVM and JIVET.


Assuntos
Bioimpressão , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos , Animais , Técnicas de Cultura de Células/métodos , Simulação por Computador , Feminino , Ovinos
8.
PLoS One ; 16(6): e0253536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166427

RESUMO

Diagnostic imaging has significantly grown over the last thirty years as indispensable support for diagnostic, prognostic, therapeutic and monitoring procedures of human diseases. This study explored the effects of low-dose X-ray medical diagnostics exposure on female fertility. To aim this, cumulus-oocyte complexes (COCs) recovered from the ovaries of juvenile sheep and human ovaries were used as complementary models for in vitro studies. In the sheep model, the effects of low-dose X-rays on oocyte viability and developmental competence were evaluated. In human ovaries originated from two age group (21-25 and 33-36 years old) subjects with gender dysphoria, X-rays effects on tissue morphology, follicular density and expression of apoptosis-related (NOXA, PUMA, Bcl2, Bak, γH2AX) and cell cycle-related genes (p21 and ki67) were investigated. It was noted that in sheep, the minimum dose of 10 mGy did not influence most of examined parameters at oocyte and embryo levels, whereas 50 and 100 mGy X-ray exposure reduced oocyte bioenergetic/oxidative activity but without any visible effects on oocyte and embryo development. In addition, blastocyst bioenergetic/oxidative status was reduced with all used doses. Overall data on human ovaries showed that low-dose X-rays, similarly as in sheep, did not alter any of examined parameters. However, in women belonging to the 33-36 year group, significantly reduced follicular density was observed after exposure to 50 and 100 mGy, and increased NOXA and Bax expression after exposure at 50 mGy. In conclusion, used low-doses of X-ray exposure, which resemble doses used in medical diagnostics, produce weak damaging effects on female fertility with increased susceptibility in advanced age.


Assuntos
Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Oócitos/metabolismo , Ovário/metabolismo , Raios X , Adulto , Animais , Feminino , Humanos , Técnicas de Maturação in Vitro de Oócitos , Ovário/diagnóstico por imagem , Oxirredução/efeitos da radiação , Radiografia , Ovinos
9.
Mycotoxin Res ; 37(1): 1-9, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32981022

RESUMO

Beauvericin (BEA) is a member of the enniatin family of mycotoxins which has received increasing interest because of frequent occurrence in food and feed. By its ionophoric properties, BEA is able to alter membrane ion permeability uncoupling oxidative phosphorylation. It was also shown to alter oocyte mitochondrial function. In this study, the effects of BEA at 0.5, 1, ,3 and 5 µmol/L on expression of genes coding for key proteins of the mitochondrial chain in ovine oocytes and cumulus cells were evaluated at different time points of in vitro maturation (IVM), germinal vesicle (GV; t = 0), metaphase I (MI; t = 7 h), and metaphase II (MII; t = 24 h). The expression of nuclear (TFAM, NDUFA12, UQCRH, COX4, ATP5O) and mitochondrial (ND1, COX1, COX2, ATP6, ATP8) genes coding for proteins of Complexes I, III, IV, and V was analyzed by qRT-PCR. After BEA exposure, perturbed expression of all genes was observed in cumulus cells and in oocytes at the MI stage (7 h IVM). Expression of ND1, UQCRH, COX4 and ATP5O was downregulated in cumulus cells and upregulated in oocytes starting from 0.5 µmol/L BEA. Expression of TFAM, NDUFA12, COX1, COX2, ATP6, and ATP8 was upregulated starting from 1 µmol/L in cumulus cells and from 3 µmol/L in oocytes. Cumulus cells and oocytes displayed different gene expression patterns upon BEA exposure. The downregulation in cumulus cells of four genes coding for proteins of mitochondrial complexes could represent a major toxic event induced by BEA on the cumulus-oocyte complex which may result in mitochondrial functional alteration.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Depsipeptídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Micotoxinas/farmacologia , Oócitos/efeitos dos fármacos , Animais , Feminino , Ovinos
10.
Mycotoxin Res ; 37(1): 23-37, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996062

RESUMO

The genotoxic and nephrotoxic mycotoxin Ochratoxin A (OTA) has also been reported to have adverse effects on oocyte maturation and embryo development. Previous studies on the effects of OTA on female fertility have used micromolar concentrations, but no information is available to date on effects in a more relevant nanomolar range. This study used a juvenile sheep model to evaluate the effects of oocyte exposure to low levels of OTA on maturation, fertilization, and embryo development. Further, it was investigated whether different mechanisms of action of OTA could be responsible for varying toxic effects at different levels of exposure. Cumulus-oocyte-complexes (COCs) were exposed to 10 µmol/L-0.1 nmol/L OTA during in vitro maturation and evaluated for cumulus viability, oocyte maturation, and bioenergetic/oxidative status. COCs were subjected to in vitro fertilization, embryo culture, and embryo quality assessment via morphology, viability, bioenergetic/oxidative status, and time-lapse monitoring. At micromolar concentrations, OTA induced cytotoxic effects, by reducing cumulus expansion and oocyte maturation. OTA altered temporospatial dynamics of zygote pronuclear formation and embryo morphokinetics. Blastocysts, even morphologically normal, were found to undergo collapse events, which were probably related to boosted blastocyst mitochondrial activity. At nanomolar concentrations, OTA did not affect COC morpho-functional parameters, but impaired oocyte ability to prevent polyspermy and increased blastocyst apoptosis. In conclusion, in the female germ cell, cytotoxic nonspecific effects characterize OTA-induced toxicity at high exposure levels, whereas fine tuning-mode effects, not associated with altered cell viability and integrity, characterize OTA toxic action at low levels.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Ocratoxinas/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Fatores Etários , Animais , Apoptose/efeitos dos fármacos , Feminino , Modelos Animais , Ovinos
11.
PLoS One ; 15(9): e0238812, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32915922

RESUMO

Three-dimensional in vitro maturation (3D IVM) is a promising approach to improve IVM efficiency as it could prevent cumulus-oocyte complex (COC) flattening and preserve its structural and functional integrity. Methods reported to date have low reproducibility and validation studies are limited. In this study, a bioprinting based production process for generating microbeads containing a COC (COC-microbeads) was optimized and its validity tested in a large animal model (sheep). Alginate microbeads were produced and characterized for size, shape and stability under culture conditions. COC encapsulation had high efficiency and reproducibility and cumulus integrity was preserved. COC-microbeads underwent IVM, with COCs cultured in standard 2D IVM as controls. After IVM, oocytes were analyzed for nuclear chromatin configuration, bioenergetic/oxidative status and transcriptional activity of genes biomarker of mitochondrial activity (TFAM, ATP6, ATP8) and oocyte developmental competence (KHDC3, NLRP5, OOEP and TLE6). The 3D system supported oocyte nuclear maturation more efficiently than the 2D control (P<0.05). Ooplasmic mitochondrial activity and reactive oxygen species (ROS) generation ability were increased (P<0.05). Up-regulation of TFAM, ATP6 and ATP8 and down-regulation of KHDC3, NLRP5 expression were observed in 3D IVM. In conclusion, the new bioprinting method for producing COC-microbeads has high reproducibility and efficiency. Moreover, 3D IVM improves oocyte nuclear maturation and relevant parameters of oocyte cytoplasmic maturation and could be used for clinical and toxicological applications.


Assuntos
Bioimpressão , Células do Cúmulo/citologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , Animais , Automação , Cápsulas , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ovinos
12.
Animals (Basel) ; 10(5)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32423131

RESUMO

The meagre, Argyrosomus regius, is a valued fish species of which aquaculture production might be supported by the development of a stem germ cell xenotransplantation technology. Meagre males were sampled at a fish farm in the Ionian Sea (Italy) at the beginning and end of the reproductive season. Small and large Type A undifferentiated spermatogonia were histologically identified in the germinal epithelium. Among the tested stemness markers, anti-oct4 and anti-vasa antibodies labeled cells likely corresponding to the small single Type A spermatogonia; no labeling was obtained with anti-GFRA1 and anti-Nanos2 antibodies. Two types of single A spermatogonia were purified via density gradient centrifugation of enzymatically digested testes. Testes from fish in active spermatogenesis resulted in a more efficient spermatogonial stem cell (SSC) yield. After cell seeding, meagre SSCs showed active proliferation from Day 7 to Day 21 and were cultured up to Day 41. After cryopreservation in dimethyl-sulfoxide-based medium, cell viability was 28.5%. In conclusion, these results indicated that meagre SSCs could be isolated, characterized, cultured in vitro, successfully cryopreserved, and used after thawing. This is a first step towards the development of a xenotransplantation technology that might facilitate the reproduction of this valuable species in captivity.

13.
Biology (Basel) ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012799

RESUMO

Conventional sperm selection techniques used in ARTs rely on centrifugation steps. To date, the different studies reported on the effects of centrifugation on stallion sperm motility provided contrasting results and do not include effects on mitochondrial functionality and different oxidative parameters. The effects of different centrifugation protocols (300 ×g for 5', 300 ×g for 10', 1500 ×g for 5' and 1500 ×g for 10' vs no centrifugation) on motility and oxidative status in cryopreserved stallion sperm, were analyzed. After centrifugation, almost all motility parameters were significantly altered, as observed by computer-assisted sperm analysis. A polarographic assay of oxygen consumption showed a progressive decrease in mitochondria respiration from the gentlest to the strongest protocol. By laser scanning confocal microscopy, significant reduction of mitochondrial membrane potential, at any tested protocol, and time-dependent effects, at the same centrifugal force, were found. Increased DNA fragmentation index at any tested protocol and time-dependent effects at the same centrifugal force were found, whereas increased protein carbonylation was observed only at the strongest centrifugal force. These results provide more comprehensive understandings on centrifugation-induced effects on cryopreserved stallion sperm and suggest that, even at a weak force for a short time, centrifugation impairs different aspects of equine sperm metabolism and functionality.

14.
Biotechnol Adv ; 40: 107498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31836499

RESUMO

Male infertility often involves idiopathic or unknown causes, leading to an increasing demand for assisted reproduction technologies (ART). Conventional sperm sorting techniques rely on centrifugation steps that are known to cause oxidative stress and consequently damage cells. Alternative novel techniques have been introduced but offer disadvantages that need to be overcome. These techniques are also employed to increase the number and the quality of subjects in the animal breeding industry, to obtain purebred subjects or to preserve endangered animal species. Microfluidics deals with the manipulation of small amounts of volume within a microdevice known as lab-on-a-chip (LOC), which offers rapid analyses, ease of use, small reagent sample volumes, high-throughput processing and wide reproducibility owing to automation and standardization. As the LOC allows gamete handling within a microenvironment that strictly mimics physiological in vivo conditions and avoids centrifugation steps and long processing time, the use of microfluidics for sperm sorting and selection have been proposed during the last 15 years and is currently under investigation. Moreover, LOC technologies to sort, identify and analyse other kinds of cells could be transferred to sperm selection and analysis, thus opening the way to a novel approach to the sperm cell selection and manipulation. This review describes the techniques routinely performed in human and animal clinical practice for sorting good-quality sperm for in vitro fertilization procedures, and focuses on the positive and negative aspects of each method. Emerging microfluidic devices, recently proposed for sperm selection, are also described and, when possible, compared with standard methods.


Assuntos
Fertilização in vitro , Espermatozoides , Animais , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Microfluídica , Reprodutibilidade dos Testes
15.
Mol Reprod Dev ; 86(10): 1430-1443, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31410935

RESUMO

Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus-oocyte-complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase-mediated dUTP nick-End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short-term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long-term carry-over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late-stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3-0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.


Assuntos
Depsipeptídeos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Micotoxinas/toxicidade , Oócitos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Ovinos
16.
Mol Reprod Dev ; 86(10): 1388-1404, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31025442

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with endocrine-disrupting properties. In this study, we used an equine model to investigate DEHP concentrations in ovarian follicular fluid (FF), and to determine the effects of exposure of oocytes to potentially toxic concentrations of DEHP during in vitro maturation (IVM) on embryo development and quality. Embryo development was evaluated using time-lapse monitoring (TLM), a photomicroscopic tool that reveals abnormalities in cleavage kinetics unobservable by conventional morphology assessment. Blastocyst bioenergetic/oxidative status was assessed by confocal analysis. The possibility that verbascoside (VB), a bioactive polyphenol with antioxidant activity, could counteract DEHP-induced oocyte oxidative damage, was investigated. DEHP was detected in FF and in IVM media at concentrations up to 60 nM. Culture of oocytes in the presence of 500 nM DEHP delayed second polar body extrusion, reduced duration of the second cell cycle, and increased the percentage of embryos showing abrupt multiple cleavage, compared with controls. Mitochondrial activity and intracellular levels of reactive oxygen species were reduced in blastocysts from DEHP-exposed oocytes. VB addition during IVM limited DEHP-induced blastocyst damage. In conclusion, DEHP is detectable in equine FF and culture medium, and oocyte exposure to increased concentrations of DEHP during IVM affects preimplantation embryo development. Moreover, TLM, reported for the first time in the horse in this study, is an efficient tool for identifying altered morphokinetic parameters and cleavage abnormalities associated with exposure to toxic compounds.


Assuntos
Dietilexilftalato/toxicidade , Embrião de Mamíferos , Técnicas de Maturação in Vitro de Oócitos , Oócitos/efeitos dos fármacos , Animais , Blastocisto/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/patologia , Embrião de Mamíferos/fisiopatologia , Feminino , Cavalos , Masculino , Injeções de Esperma Intracitoplásmicas
17.
Reproduction ; 155(5): 433-445, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29491124

RESUMO

Sperm motility, a feature essential for in vivo fertilization, is influenced by intracellular pH (pHi) homeostasis. Several mechanisms are involved in pHi regulation, among which sodium-hydrogen exchangers (NHEs), a family of integral transmembrane proteins that catalyze the exchange of Na+ for H+ across lipid bilayers. A preliminary characterization of NHE activity and kinetic parameters, followed by analysis of the expression and localization of the protein in ram spermatozoa was performed. NHE activity showed an apparent Km for external Na+ of 17.61 mM. Immunoblotting revealed a molecular mass of 85 kDa. Immunolocalization pattern showed some species-specific aspects, such as positive labeling at the equatorial region of the sperm head. Cariporide, a selective NHE1 inhibitor, significantly reduced pHi recovery (85%). Similarly, exposure to cariporide significantly inhibited different motility parameters, including those related to sperm capacitation. In vitro fertilization (IVF) was not affected by cariporide, possibly due to the non-dramatic, although significant, drop in motility and velocity parameters or due to prolonged exposure during IVF, which may have caused progressive loss of its inhibitory effect. In conclusion, this is the first study documenting, in a large animal model (sheep) of well-known translational relevance, a direct functional role of NHE on sperm pHi and motility. The postulated specificity of cariporide toward isoform 1 of the Na+/H+ exchanger seems to suggest that NHE1 may contribute to the observed effects on sperm cell functionality.


Assuntos
Guanidinas/farmacologia , Trocador 1 de Sódio-Hidrogênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Concentração de Íons de Hidrogênio , Masculino , Ovinos , Capacitação Espermática/efeitos dos fármacos , Capacitação Espermática/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
18.
Zygote ; 25(5): 612-630, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28929977

RESUMO

Most wild equids and many domestic horse breeds are at risk of extinction, so there is an urgent need for genome resource banking. Embryos cryopreservation allows the preservation of genetics from male and female and is the fastest method to restore a breed. In the equine, embryo production in vitro would allow the production of several embryos per cycle. Intracytoplasmic sperm injection (ICSI) is used to generate horse embryos, but it requires expensive equipment and expertise in micromanipulation, and blastocyst development rates remain low. No conventional in vitro fertilization (IVF) technique for equine embryo production is available. The development of culture conditions able to mimic the maturation of the oocyte in preovulatory follicular fluid (pFF) and the post-maturation in oviductal fluid (OF) may improve embryo production in vitro. Our aim was to analyse the effect of in vitro maturation in pFF and incubation in OF on in vitro maturation of equine oocytes, fertilization using conventional IVF or ICSI, and embryo development after culture in synthetic oviductal fluid (SOF) or DMEM-F12. Oocytes collected from slaughtered mares or by ovum pick up were matured in vitro in pFF or semi-synthetic maturation medium (MM). The in vitro maturation, fertilization and development rates were not statistically different between pFF and MM. After in vitro maturation, oocytes were incubated with or without OF. Post-maturation in OF did not significantly improve the fertilization and development rates. Thus, in our study, exposure to physiological fluids for oocyte maturation and post-maturation does not improve in vitro embryo production in the horse.


Assuntos
Líquidos Corporais/química , Meios de Cultura/farmacologia , Líquido Folicular/química , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/efeitos dos fármacos , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Meios de Cultura/química , Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura Embrionária/veterinária , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilização in vitro/métodos , Fertilização in vitro/veterinária , Cavalos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Masculino , Oócitos/citologia , Oócitos/fisiologia , Oviductos , Injeções de Esperma Intracitoplásmicas/métodos , Injeções de Esperma Intracitoplásmicas/veterinária
19.
Reprod Toxicol ; 65: 204-211, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27522010

RESUMO

The effects of verbascoside (VB), added at nanomolar concentrations during in vitro maturation (IVM) of juvenile sheep oocytes, on in vitro embryo development and its mechanisms of action at the oocyte level were analyzed. Developmental rates, after IVM in the presence/absence of VB (1nM for 24h; 1nM for 2h; 10nM for 2h), were evaluated. The bioenergetic/oxidative status of oocytes matured after IVM in the presence/absence of 1nM VB for 24h was assessed by confocal analysis of mitochondria and reactive oxygen species (ROS), lipid peroxidation (LPO) assay, and quantitative PCR of bioenergy/redox-related genes. The addition of 1nM VB during 24h IVM significantly increased blastocyst formation and quality. Verbascoside reduced oocyte ROS and LPO and increased mitochondria/ROS colocalization while keeping mitochondria activity and gene expression unchanged. In conclusion, supplementation with nanomolar concentrations of VB during IVM, in the juvenile sheep model, promotes embryo development by protecting the oocyte against oxidative stress.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Glucosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/farmacologia , Substâncias Protetoras/farmacologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Peroxidação de Lipídeos/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ovinos
20.
Glycoconj J ; 33(5): 717-24, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27085877

RESUMO

The high complexity of glycome, the repertoire of glycans expressed in a cell or in an organism, is difficult to analyze and the use of new technologies has accelerated the progress of glycomics analysis. In the last decade, the microarray approaches, and in particular glycan and lectin microarrays, have provided new insights into evaluation of cell glycosylation status. Here we present a cell microarray method based on cell printing on microarray slides for the analysis of the glycosylation pattern of the cell glycocalyx. In order to demonstrate the reliability of the developed method, the glycome profiles of equine native uncultured mural granulosa cells (uGCs) and in vitro cultured mural granulosa cells (cGCs) were determined and compared. The method consists in the isolation of GCs, cell printing into arrays on microarray slide, incubation with a panel of biotinylated lectins, reaction with fluorescent streptavidin and signal intensity detection by a microarray scanner. Cell microarray technology revealed that glycocalyx of both uGCs and cGCs contains N-glycans, sialic acid terminating glycans, N-acetylglucosamine and O-glycans. The comparison of uGCs and cGCs glycan signals indicated an increase in the expression of sialic acids, N-acetylglucosamine, and N-glycans in cGCs. Glycan profiles determined by cell microarray agreed with those revealed by lectin histochemistry. The described cell microarray method represents a simple and sensitive procedure to analyze cell surface glycome in mammalian cells.


Assuntos
Glicocálix/metabolismo , Células da Granulosa/metabolismo , Lectinas/química , Análise Serial de Tecidos/instrumentação , Análise Serial de Tecidos/métodos , Animais , Feminino , Células da Granulosa/citologia , Cavalos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...