Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509283

RESUMO

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Assuntos
Hormônio Liberador da Corticotropina , Habenula , Animais , Masculino , Camundongos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Endocanabinoides , Habenula/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
2.
eNeuro ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331575

RESUMO

Alzheimer's Disease (AD) is associated with brain accumulation of synaptotoxic amyloid-ß (Aß) peptides produced by the proteolytic processing of amyloid precursor protein (APP). Cognitive impairments associated with AD correlate with dendritic spine and excitatory synapse loss, particularly within the hippocampus. In rodents, soluble Aß oligomers impair hippocampus-dependent learning and memory, promote dendritic spine loss, inhibit NMDA-type glutamate receptor (NMDAR)-dependent long-term potentiation (LTP), and promote synaptic depression (LTD), at least in part through activation of the Ca2+-CaM-dependent phosphatase calcineurin (CaN). Yet, questions remain regarding Aß-dependent postsynaptic CaN signaling specifically at the synapse to mediate its synaptotoxicity. Here, we use pharmacologic and genetic approaches to demonstrate a role for postsynaptic signaling via A kinase-anchoring protein 150 (AKAP150)-scaffolded CaN in mediating Aß-induced dendritic spine loss in hippocampal neurons from rats and mice of both sexes. In particular, we found that Ca2+-permeable AMPA-type glutamate receptors (CP-AMPARs), which were previously shown to signal through AKAP-anchored CaN to promote both LTD and Aß-dependent inhibition of LTP, are also required upstream of AKAP-CaN signaling to mediate spine loss via overexpression of APP containing multiple mutations linked to familial, early-onset AD and increased Aß production. In addition, we found that the CaN-dependent nuclear factor of activated T-cells (NFAT) transcription factors are required downstream to promote Aß-mediated dendritic spine loss. Finally, we identified the E3-ubiquitin ligase Mdm2, which was previously linked to LTD and developmental synapse elimination, as a downstream NFAT target gene upregulated by Aß whose enzymatic activity is required for Aß-mediated spine loss.Significance Statement Impaired hippocampal function and synapse loss are hallmarks of AD linked to Aß oligomers. Aß exposure acutely blocks hippocampal LTP and enhances LTD and chronically leads to dendritic spine synapse loss. In particular, Aß hijacks normal plasticity mechanisms, biasing them toward synapse weakening/elimination, with previous studies broadly linking CaN phosphatase signaling to this synaptic dysfunction. However, we do not understand how Aß engages signaling specifically at synapses. Here we elucidate a synapse-to-nucleus signaling pathway coordinated by the postsynaptic scaffold protein AKAP150 that is activated by Ca2+ influx through CP-AMPARs and transduced to nucleus by CaN-NFAT signaling to transcriptionally upregulate the E3-ubiquitin ligase Mdm2 that is required for Aß-mediated spine loss. These findings identify Mdm2 as potential therapeutic target for AD.

3.
Nature ; 621(7977): 146-153, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648853

RESUMO

Learning and memory are thought to require hippocampal long-term potentiation (LTP), and one of the few central dogmas of molecular neuroscience that has stood undisputed for more than three decades is that LTP induction requires enzymatic activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII)1-3. However, as we delineate here, the experimental evidence is surprisingly far from conclusive. All previous interventions inhibiting enzymatic CaMKII activity and LTP4-8 also interfere with structural CaMKII roles, in particular binding to the NMDA-type glutamate receptor subunit GluN2B9-14. Thus, we here characterized and utilized complementary sets of new opto-/pharmaco-genetic tools to distinguish between enzymatic and structural CaMKII functions. Several independent lines of evidence demonstrated LTP induction by a structural function of CaMKII rather than by its enzymatic activity. The sole contribution of kinase activity was autoregulation of this structural role via T286 autophosphorylation, which explains why this distinction has been elusive for decades. Directly initiating the structural function in a manner that circumvented this T286 role was sufficient to elicit robust LTP, even when enzymatic CaMKII activity was blocked.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Potenciação de Longa Duração , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Optogenética , Fosforilação , Ligação Proteica
4.
Sci Signal ; 16(795): eade5892, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490545

RESUMO

CaMKII has molecular memory functions because transient calcium ion stimuli can induce long-lasting increases in its synaptic localization and calcium ion-independent (autonomous) activity, thereby leaving memory traces of calcium ion stimuli beyond their duration. The synaptic effects of two mechanisms that induce CaMKII autonomy are well studied: autophosphorylation at threonine-286 and binding to GluN2B. Here, we examined the neuronal functions of additional autonomy mechanisms: nitrosylation and oxidation of the CaMKII regulatory domain. We generated a knock-in mouse line with mutations that render the CaMKII regulatory domain nitrosylation/oxidation-incompetent, CaMKIIΔSNO, and found that it had deficits in memory and synaptic plasticity that were similar to those in aged wild-type mice. In addition, similar to aged wild-type mice, in which CaMKII was hyponitrosylated, but unlike mice with impairments of other CaMKII autonomy mechanisms, CaMKIIΔSNO mice showed reduced long-term potentiation (LTP) when induced by theta-burst stimulation but not high-frequency stimulation (HFS). As in aged wild-type mice, the HFS-LTP in the young adult CaMKIIΔSNO mice required L-type voltage-gated calcium ion channels. The effects in aged mice were likely caused by the loss of nitrosylation because no decline in CaMKII oxidation was detected. In hippocampal neurons, nitrosylation of CaMKII induced its accumulation at synapses under basal conditions in a manner mediated by GluN2B binding, like after LTP stimuli. However, LTP-induced synaptic CaMKII accumulation did not require nitrosylation. Thus, an aging-associated decrease in CaMKII nitrosylation may cause impairments by chronic synaptic effects, such as the decrease in basal synaptic CaMKII.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Cálcio , Animais , Camundongos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal , Fosforilação , Sinapses/metabolismo
5.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168421

RESUMO

Activity-dependent protein synthesis is crucial for many long-lasting forms of synaptic plasticity. However, our understanding of the translational mechanisms controlling inhibitory synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the precise mechanisms controlling gephyrin translation during this process remain unknown. Here, we identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting GABAergic synaptic structure and function. We find that iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and allowing for increased de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Overall, this work delineates a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.

6.
iScience ; 25(11): 105288, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36304124

RESUMO

Previously, we found that amyloid-beta (Aß) competitively inhibits the kinesin motor protein KIF11 (Kinesin-5/Eg5), leading to defects in the microtubule network and in neurotransmitter and neurotrophin receptor localization and function. These biochemical and cell biological mechanisms for Aß-induced neuronal dysfunction may underlie learning and memory defects in Alzheimer's disease (AD). Here, we show that KIF11 overexpression rescues Aß-mediated decreases in dendritic spine density in cultured neurons and in long-term potentiation in hippocampal slices. Furthermore, Kif11 overexpression from a transgene prevented spatial learning deficits in the 5xFAD mouse model of AD. Finally, increased KIF11 expression in neuritic plaque-positive AD patients' brains was associated with better cognitive performance and higher expression of synaptic protein mRNAs. Taken together, these mechanistic biochemical, cell biological, electrophysiological, animal model, and human data identify KIF11 as a key target of Aß-mediated toxicity in AD, which damages synaptic structures and functions critical for learning and memory in AD.

7.
Front Synaptic Neurosci ; 14: 1004154, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186623

RESUMO

A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.

8.
Neuropharmacology ; 220: 109271, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162529

RESUMO

Genetic alterations in autism spectrum disorders (ASD) frequently disrupt balance between synaptic excitation and inhibition and alter plasticity in the hippocampal CA1 region. Individuals with Timothy Syndrome (TS), a genetic disorder caused by CaV1.2 L-type Ca2+ channel (LTCC) gain-of function mutations, such as G406R, exhibit social deficits, repetitive behaviors, and cognitive impairments characteristic of ASD that are phenocopied in TS2-neo mice expressing G406R. Here, we characterized hippocampal CA1 synaptic function in male TS2-neo mice and found basal excitatory transmission was slightly increased and inhibitory transmission strongly decreased. We also found distinct impacts on two LTCC-dependent forms of long-term potentiation (LTP) synaptic plasticity that were not readily consistent with LTCC gain-of-function. LTP induced by high-frequency stimulation (HFS) was strongly impaired in TS2-neo mice, suggesting decreased LTCC function. Yet, CaV1.2 expression, basal phosphorylation, and current density were similar for WT and TS2-neo. However, this HFS-LTP also required GABAA receptor activity, and thus may be impaired in TS2-neo due to decreased inhibitory transmission. In contrast, LTP induced in WT mice by prolonged theta-train (PTT) stimulation in the presence of a ß-adrenergic receptor agonist to increase CaV1.2 phosphorylation was partially induced in TS2-neo mice by PTT stimulation alone, consistent with increased LTCC function. Overall, our findings provide insights regarding how altered CaV1.2 channel function disrupts basal transmission and plasticity that could be relevant for neurobehavioral alterations in ASD.


Assuntos
Canais de Cálcio Tipo L , Potenciação de Longa Duração , Receptores de GABA-A , Animais , Transtorno Autístico , Região CA1 Hipocampal , Canais de Cálcio Tipo L/genética , Modelos Animais de Doenças , Hipocampo/metabolismo , Síndrome do QT Longo , Masculino , Camundongos , Mutação , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Sindactilia
9.
Front Synaptic Neurosci ; 14: 852227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463850

RESUMO

The nanoscale architecture of synapses has been investigated using multiple super-resolution methods, revealing a common modular structure for scaffolds, neurotransmitter receptors, and presynaptic proteins. This fundamental organization of proteins into subsynaptic domains (SSDs) is thought to be important for synaptic function and plasticity and common to many types of synapses. Using 3D super-resolution Structured Illumination Microscopy (3D-SIM), we recently showed that GABAergic inhibitory synapses exhibit this nanoscale organizational principle and are composed of SSDs of GABA A receptors (GABA A Rs), the inhibitory scaffold gephyrin, and the presynaptic active zone protein, RIM. Here, we have investigated the use of 3D-SIM and dSTORM to analyze the nanoscale architecture of the inhibitory synaptic adhesion molecule, neuroligin-2 (NL2). NL2 is a crucial mediator of inhibitory synapse formation and organization, associating with both GABA A Rs and gephyrin. However, the nanoscale sub-synaptic distribution NL2 remains unknown. We found that 3D-SIM and dSTORM provide complementary information regarding the distribution of NL2 at the inhibitory synapse, with NL2 forming nanoscale structures that have many similarities to gephyrin nanoscale architecture.

10.
Cell Rep ; 37(12): 110142, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936876

RESUMO

GABAergic synaptic inhibition controls neuronal firing, excitability, and synaptic plasticity to regulate neuronal circuits. Following an acute excitotoxic insult, inhibitory synapses are eliminated, reducing synaptic inhibition, elevating circuit excitability, and contributing to the pathophysiology of brain injuries. However, mechanisms that drive inhibitory synapse disassembly and elimination are undefined. We find that inhibitory synapses are disassembled in a sequential manner following excitotoxicity: GABAARs undergo rapid nanoscale rearrangement and are dispersed from the synapse along with presynaptic active zone components, followed by the gradual removal of the gephyrin scaffold, prior to complete elimination of the presynaptic terminal. GABAAR nanoscale reorganization and synaptic declustering depends on calcineurin signaling, whereas disassembly of gephyrin relies on calpain activation, and blockade of both enzymes preserves inhibitory synapses after excitotoxic insult. Thus, inhibitory synapse disassembly occurs rapidly, with nanoscale precision, in a stepwise manner and most likely represents a critical step in the progression of hyperexcitability following excitotoxicity.


Assuntos
Lesões Encefálicas/fisiopatologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
11.
eNeuro ; 8(6)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34789478

RESUMO

Secreted amyloid-ß (Aß) peptide forms neurotoxic oligomeric assemblies thought to cause synaptic deficits associated with Alzheimer's disease (AD). Soluble Aß oligomers (Aßo) directly bind to neurons with high affinity and block plasticity mechanisms related to learning and memory, trigger loss of excitatory synapses and eventually cause cell death. While Aßo toxicity has been intensely investigated, it remains unclear precisely where Aßo initially binds to the surface of neurons and whether sites of binding relate to synaptic deficits. Here, we used a combination of live cell, super-resolution and ultrastructural imaging techniques to investigate the kinetics, reversibility and nanoscale location of Aßo binding. Surprisingly, Aßo does not bind directly at the synaptic cleft as previously thought but, instead, forms distinct nanoscale clusters encircling the postsynaptic membrane with a significant fraction also binding presynaptic axon terminals. Synaptic plasticity deficits were observed at Aßo-bound synapses but not closely neighboring Aßo-free synapses. Thus, perisynaptic Aßo binding triggers spatially restricted signaling mechanisms to disrupt synaptic function. These data provide new insight into the earliest steps of Aßo pathology and lay the groundwork for future studies evaluating potential surface receptor(s) and local signaling mechanisms responsible for Aßo binding and synapse dysfunction.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Plasticidade Neuronal , Neurônios , Sinapses
12.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
13.
Cell Rep ; 37(1): 109786, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610314

RESUMO

Regulated insertion and removal of postsynaptic AMPA glutamate receptors (AMPARs) mediates hippocampal long-term potentiation (LTP) and long-term depression (LTD) synaptic plasticity underlying learning and memory. In Alzheimer's disease ß-amyloid (Aß) oligomers may impair learning and memory by altering AMPAR trafficking and LTP/LTD balance. Importantly, Ca2+-permeable AMPARs (CP-AMPARs) assembled from GluA1 subunits are excluded from hippocampal synapses basally but can be recruited rapidly during LTP and LTD to modify synaptic strength and signaling. By employing mouse knockin mutations that disrupt anchoring of the kinase PKA or phosphatase Calcineurin (CaN) to the postsynaptic scaffold protein AKAP150, we find that local AKAP-PKA signaling is required for CP-AMPAR recruitment, which can facilitate LTP but also, paradoxically, prime synapses for Aß impairment of LTP mediated by local AKAP-CaN LTD signaling that promotes subsequent CP-AMPAR removal. These findings highlight the importance of PKA/CaN signaling balance and CP-AMPARs in normal plasticity and aberrant plasticity linked to disease.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Peptídeos beta-Amiloides/farmacologia , Calcineurina/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Receptores de AMPA/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Região CA1 Hipocampal/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de AMPA/antagonistas & inibidores , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/farmacologia , Sinapses/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
14.
J Biol Chem ; 296: 100442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617875

RESUMO

The adipocyte hormone leptin regulates glucose homeostasis both centrally and peripherally. A key peripheral target is the pancreatic ß-cell, which secretes insulin upon glucose stimulation. Leptin is known to suppress glucose-stimulated insulin secretion by promoting trafficking of KATP channels to the ß-cell surface, which increases K+ conductance and causes ß-cell hyperpolarization. We have previously shown that leptin-induced KATP channel trafficking requires protein kinase A (PKA)-dependent actin remodeling. However, whether PKA is a downstream effector of leptin signaling or PKA plays a permissive role is unknown. Using FRET-based reporters of PKA activity, we show that leptin increases PKA activity at the cell membrane and that this effect is dependent on N-methyl-D-aspartate receptors, CaMKKß, and AMPK, which are known to be involved in the leptin signaling pathway. Genetic knockdown and rescue experiments reveal that the increased PKA activity upon leptin stimulation requires the membrane-targeted PKA-anchoring protein AKAP79/150, indicating that PKA activated by leptin is anchored to AKAP79/150. Interestingly, disrupting protein phosphatase 2B (PP2B) anchoring to AKAP79/150, known to elevate basal PKA signaling, leads to increased surface KATP channels even in the absence of leptin stimulation. Our findings uncover a novel role of AKAP79/150 in coordinating leptin and PKA signaling to regulate KATP channel trafficking in ß-cells, hence insulin secretion. The study further advances our knowledge of the downstream signaling events that may be targeted to restore insulin secretion regulation in ß-cells defective in leptin signaling, such as those from obese individuals with type 2 diabetes.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Secretoras de Insulina/metabolismo , Canais KATP/metabolismo , Leptina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Calcineurina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Secreção de Insulina , Leptina/metabolismo , Fosforilação , Cultura Primária de Células , Transporte Proteico , Transdução de Sinais
15.
Cell Rep ; 31(12): 107785, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579917

RESUMO

Molecular mechanisms underlying plasticity at brain inhibitory synapses remain poorly characterized. Increased postsynaptic clustering of GABAA receptors (GABAARs) rapidly strengthens inhibition during inhibitory long-term potentiation (iLTP). However, it is unclear how synaptic GABAAR clustering is maintained to sustain iLTP. Here, we identify a role for miR376c in regulating the translation of mRNAs encoding the synaptic α1 and γ2 GABAAR subunits, GABRA1 and GABRG2, respectively. Following iLTP induction, transcriptional repression of miR376c is induced through a calcineurin-NFAT-HDAC signaling pathway and promotes increased translation and clustering of synaptic GABAARs. This pathway is essential for the long-term expression of iLTP and is blocked by miR376c overexpression, specifically impairing inhibitory synaptic strength. Finally, we show that local de novo synthesis of synaptic GABAARs occurs exclusively in dendrites and in a miR376c-dependent manner following iLTP. Together, this work describes a local post-transcriptional mechanism that regulates inhibitory synaptic plasticity via miRNA control of dendritic protein synthesis.


Assuntos
Potenciação de Longa Duração/genética , MicroRNAs/genética , Biossíntese de Proteínas/genética , Receptores de GABA-A/genética , Animais , Sequência de Bases , Calcineurina/metabolismo , Dendritos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Células HEK293 , Humanos , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Inibição Neural , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Transcrição Gênica
16.
Artigo em Inglês | MEDLINE | ID: mdl-32292336

RESUMO

Experience-dependent learning and memory require multiple forms of plasticity at hippocampal and cortical synapses that are regulated by N-methyl-D-aspartate receptors (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian input-specific mechanisms that rapidly increase or decrease AMPAR synaptic strength at specific inputs, and homeostatic plasticity that globally scales-up or -down AMPAR synaptic strength across many or even all inputs. Frequently, these changes in synaptic strength are also accompanied by a change in the subunit composition of AMPARs at the synapse due to the trafficking to and from the synapse of receptors lacking GluA2 subunits. These GluA2-lacking receptors are most often GluA1 homomeric receptors that exhibit higher single-channel conductance and are Ca2+-permeable (CP-AMPAR). This review article will focus on the role of protein phosphorylation in regulation of GluA1 CP-AMPAR recruitment and removal from hippocampal synapses during synaptic plasticity with an emphasis on the crucial role of local signaling by the cAMP-dependent protein kinase (PKA) and the Ca2+calmodulin-dependent protein phosphatase 2B/calcineurin (CaN) that is coordinated by the postsynaptic scaffold protein A-kinase anchoring protein 79/150 (AKAP79/150).

17.
Proc Natl Acad Sci U S A ; 116(27): 13611-13620, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209051

RESUMO

Patterns of postsynaptic activity that induce long-term potentiation of fast excitatory transmission at glutamatergic synapses between hippocampal neurons cause enlargement of the dendritic spine and promote growth in spine endoplasmic reticulum (ER) content. Such postsynaptic activity patterns also impact Ca2+ signaling in the adjoining dendritic shaft, in a zone centered on the spine-shaft junction and extending ∼10-20 µm in either direction along the shaft. Comparing this specialized zone in the shaft with the dendrite in general, plasticity-inducing stimulation of a single spine causes more profound depletion of Ca2+ stores in the ER, a greater degree of interaction between stromal interaction molecule 1 (STIM1) and L-type Ca2+ channels, and thus stronger STIM1 inhibition of these channels. Here we show that the length of this zone along the dendritic axis can be approximately doubled through the neuromodulatory action of ß-adrenergic receptors (ßARs). The mechanism of ßAR enlargement of the zone arises from protein kinase A-mediated enhancement of L-type Ca2+ current, which in turn lowers [Ca2+]ER through ryanodine receptor-dependent Ca2+-induced Ca2+ release and activates STIM1 feedback inhibition of L-type Ca2+ channels. An important function of this dendritic zone is to support crosstalk between spines along its length such that spines neighboring a strongly stimulated spine are enabled to undergo structural plasticity in response to stimulation that would otherwise be subthreshold for spine structural plasticity. This form of crosstalk requires L-type Ca2+ channel current to activate STIM1, and ßAR activity extends the range along the shaft over which such spine-to-spine communication can occur.


Assuntos
Cálcio/metabolismo , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Receptor Cross-Talk/fisiologia , Transdução de Sinais , Sinapses/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Potenciais Sinápticos/fisiologia
18.
Mol Biol Cell ; 30(14): 1743-1756, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091162

RESUMO

In neurons, regulation of activity-dependent transcription by the nuclear factor of activated T-cells (NFAT) depends upon Ca2+ influx through voltage-gated L-type calcium channels (LTCC) and NFAT translocation to the nucleus following its dephosphorylation by the Ca2+-dependent phosphatase calcineurin (CaN). CaN is recruited to the channel by A-kinase anchoring protein (AKAP) 79/150, which binds to the LTCC C-terminus via a modified leucine-zipper (LZ) interaction. Here we sought to gain new insights into how LTCCs and signaling to NFAT are regulated by this LZ interaction. RNA interference-mediated knockdown of endogenous AKAP150 and replacement with human AKAP79 lacking its C-terminal LZ domain resulted in loss of depolarization-stimulated NFAT signaling in rat hippocampal neurons. However, the LZ mutation had little impact on the AKAP-LTCC interaction or LTCC function, as measured by Förster resonance energy transfer, Ca2+ imaging, and electrophysiological recordings. AKAP79 and NFAT coimmunoprecipitated when coexpressed in heterologous cells, and the LZ mutation disrupted this association. Critically, measurements of NFAT mobility in neurons employing fluorescence recovery after photobleaching and fluorescence correlation spectroscopy provided further evidence for an AKAP79 LZ interaction with NFAT. These findings suggest that the AKAP79/150 LZ motif functions to recruit NFAT to the LTCC signaling complex to promote its activation by AKAP-anchored calcineurin.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Canais de Cálcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/química , Motivos de Aminoácidos , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Ratos Sprague-Dawley , Transcrição Gênica
19.
Cell Rep ; 26(13): 3537-3550.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917310

RESUMO

Long-term information storage in the brain requires continual modification of the neuronal transcriptome. Synaptic inputs located hundreds of micrometers from the nucleus can regulate gene transcription, requiring high-fidelity, long-range signaling from synapses in dendrites to the nucleus in the cell soma. Here, we describe a synapse-to-nucleus signaling mechanism for the activity-dependent transcription factor NFAT. NMDA receptors activated on distal dendrites were found to initiate L-type Ca2+ channel (LTCC) spikes that quickly propagated the length of the dendrite to the soma. Surprisingly, LTCC propagation did not require voltage-gated Na+ channels or back-propagating action potentials. NFAT nuclear recruitment and transcriptional activation only occurred when LTCC spikes invaded the somatic compartment, and the degree of NFAT activation correlated with the number of somatic LTCC Ca2+ spikes. Together, these data support a model for synapse to nucleus communication where NFAT integrates somatic LTCC Ca2+ spikes to alter transcription during periods of heightened neuronal activity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Comunicação Celular , Células Cultivadas , Feminino , Hipocampo/citologia , Humanos , Masculino , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos
20.
Cell Rep ; 26(12): 3284-3297.e3, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893601

RESUMO

Inhibitory synapses mediate the majority of synaptic inhibition in the brain, thereby controlling neuronal excitability, firing, and plasticity. Although essential for neuronal function, the central question of how these synapses are organized at the subsynaptic level remains unanswered. Here, we use three-dimensional (3D) super-resolution microscopy to image key components of the inhibitory postsynaptic domain and presynaptic terminal, revealing that inhibitory synapses are organized into nanoscale subsynaptic domains (SSDs) of the gephyrin scaffold, GABAARs and the active-zone protein Rab3-interacting molecule (RIM). Gephyrin SSDs cluster GABAAR SSDs, demonstrating nanoscale architectural interdependence between scaffold and receptor. GABAAR SSDs strongly associate with active-zone RIM SSDs, indicating an important role for GABAAR nanoscale organization near sites of GABA release. Finally, we find that in response to elevated activity, synapse growth is mediated by an increase in the number of postsynaptic SSDs, suggesting a modular mechanism for increasing inhibitory synaptic strength.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/citologia , Neurônios/citologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...