Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(3)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523900

RESUMO

Among the existing elemental characterization techniques, particle-induced x-ray emission (PIXE) and energy-dispersive x-ray (EDX) spectroscopy are two of the most widely used in different scientific and technological fields. Here, we present the first quantitative laser-driven PIXE and laser-driven EDX experimental investigation performed at the Centro de Láseres Pulsados in Salamanca. Thanks to their potential for compactness and portability, laser-driven particle sources are very appealing for materials science applications, especially for materials analysis techniques. We demonstrate the possibility to exploit the x-ray signal produced by the co-irradiation with both electrons and protons to identify the elements in the sample. We show that, using the proton beam only, we can successfully obtain quantitative information about the sample structure through laser-driven PIXE analysis. These results pave the way toward the development of a compact and multifunctional apparatus for the elemental analysis of materials based on a laser-driven particle source.

2.
Nanotechnology ; 31(23): 234001, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32202254

RESUMO

Networks of nanoscale objects are the subject of increasing interest as resistive switching systems for the fabrication of neuromorphic computing architectures. Nanostructured films of bare gold clusters produced in gas phase with thickness well beyond the electrical percolation threshold, show a non-ohmic electrical behavior and resistive switching, resulting in groups of current spikes with irregular temporal organization. Here we report the systematic characterization of the temporal correlations between single spikes and spiking rate power spectrum of nanostructured Au two-terminal devices consisting of a cluster-assembled film deposited between two planar electrodes. By varying the nanostructured film thickness we fabricated two different classes of devices with high and low initial resistance respectively. We show that the switching dynamics can be described by a power law distribution in low resistance devices whereas a bi-exponential behavior is observed in the high resistance ones. The measured resistance of cluster-assembled films shows a [Formula: see text] scaling behavior in the range of analyzed frequencies. Our results suggest the possibility of using cluster-assembled Au films as components for neuromorphic systems where a certain degree of stochasticity is required.

3.
Nanotechnology ; 26(36): 365601, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26292084

RESUMO

Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500-710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W18O49-Magneli phase to monoclinic WO3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 µm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures.

4.
Nanotechnology ; 19(47): 475602, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-21836277

RESUMO

Ag(4)O(4) (i.e. silver(I)-silver(III) oxide) thin films with tailored structure and morphology at the nanoscale have been grown by reactive pulsed laser deposition (PLD) in an oxygen-containing atmosphere and they are shown to exhibit a very strong antibacterial activity towards Gram-negative bacteria (E. coli) and to completely inhibit the growth of Gram-positive bacteria (S. aureus). The formation of this particular high-valence silver oxide is explained in terms of the reactions occurring during the expansion of the ablated species in the reactive atmosphere, leading to the formation of low-stability Ag-O dimers and atomic oxygen, providing reactive species at the substrate where the film grows. PLD is shown to allow control of the structure (i.e. crystallinity and grain size) and of the morphology of the films, from compact and columnar to foam-like, thus allowing the deposition of nanocrystalline films with increased porosity and surface area. The antibacterial action towards E. coli is demonstrated and is shown to be superior to that of nanostructured Ag-based medical products. This can be related to the release of Ag ions with high oxidation number, which are known to be very reactive towards bacteria, and to the peculiar morphology at the nanoscale resulting in a large effective surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...