Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6668): 294-299, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37856596

RESUMO

Fast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion is imparted on each burst by intervening plasma, mostly located in the intergalactic medium. In this work, we observe the burst FRB 20220610A and localize it to a morphologically complex host galaxy system at redshift 1.016 ± 0.002. The burst redshift and dispersion measure are consistent with passage through a substantial column of plasma in the intergalactic medium and extend the relationship between those quantities measured at lower redshift. The burst shows evidence for passage through additional turbulent magnetized plasma, potentially associated with the host galaxy. We use the burst energy of 2 × 1042 erg to revise the empirical maximum energy of an FRB.

2.
Nature ; 581(7809): 391-395, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461651

RESUMO

More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters1,2. Censuses of the nearby Universe have used absorption line spectroscopy3,4 to observe the 'invisible' baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe's volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas4-6 in denser regions near galaxies7. Other techniques to observe these invisible baryons also have limitations; Sunyaev-Zel'dovich analyses8,9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters9,10. Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon11-13. We augment the sample of reported arcsecond-localized14-18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments11, and we derive a cosmic baryon density of [Formula: see text] (95 per cent confidence; h70 = H0/(70 km s-1 Mpc-1) and H0 is Hubble's constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis19,20.

3.
Nature ; 577(7789): E2, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844284

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Science ; 365(6453): 565-570, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31249136

RESUMO

Fast radio bursts (FRBs) are brief radio emissions from distant astronomical sources. Some are known to repeat, but most are single bursts. Nonrepeating FRB observations have had insufficient positional accuracy to localize them to an individual host galaxy. We report the interferometric localization of the single-pulse FRB 180924 to a position 4 kiloparsecs from the center of a luminous galaxy at redshift 0.3214. The burst has not been observed to repeat. The properties of the burst and its host are markedly different from those of the only other accurately localized FRB source. The integrated electron column density along the line of sight closely matches models of the intergalactic medium, indicating that some FRBs are clean probes of the baryonic component of the cosmic web.

5.
Nature ; 561(7723): 355-359, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185904

RESUMO

The binary neutron-star merger GW1708171 was accompanied by radiation across the electromagnetic spectrum2 and localized2 to the galaxy NGC 4993 at a distance3 of about 41 megaparsecs from Earth. The radio and X-ray afterglows of GW170817 exhibited delayed onset4-7, a gradual increase8 in the emission with time (proportional to t0.8) to a peak about 150 days after the merger event9, followed by a relatively rapid decline9,10. So far, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon4,8,11-13 and a successful-jet cocoon4,8,11-18 (also called a structured jet). However, the observational data have remained inconclusive10,15,19,20 as to whether GW170817 launched a successful relativistic jet. Here we report radio observations using very long-baseline interferometry. We find that the compact radio source associated with GW170817 exhibits superluminal apparent motion between 75 days and 230 days after the merger event. This measurement breaks the degeneracy between the choked- and successful-jet cocoon models and indicates that, although the early-time radio emission was powered by a wide-angle outflow8 (a cocoon), the late-time emission was most probably dominated by an energetic and narrowly collimated jet (with an opening angle of less than five degrees) and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the evidence linking binary neutron-star mergers and short γ-ray bursts.

6.
Nature ; 505(7484): 520-4, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24390352

RESUMO

Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

7.
Nature ; 501(7467): 391-4, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23945588

RESUMO

Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

8.
Science ; 323(5919): 1327-9, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19197023

RESUMO

The double pulsar J0737-3039A/B is a unique system with which to test gravitational theories in the strong-field regime. However, the accuracy of such tests will be limited by knowledge of the distance and relative motion of the system. Here we present very long baseline interferometry (VLBI) observations which reveal that the distance to PSR J0737-3039A/B is 1150(-160)(+220) parsecs, more than double previous estimates, and confirm its low transverse velocity ( approximately 9 kilometers per second). Combined with a decade of pulsar timing, these results will allow tests of gravitational radiation emission theories at the 0.01% uncertainty level, putting stringent constraints on theories that predict dipolar gravitational radiation. They also allow insight into the system's formation and the source of its high-energy emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...