Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Rheumatol ; 76(4): 531-540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984422

RESUMO

OBJECTIVE: We analyzed the impact of amino acid (AA) availability on the inflammatory response in arthritis. METHODS: We stimulated rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLSs) with tumor necrosis factor (TNF) in the presence or absence of proteinogenic AAs and measured their response by QuantSeq 3' messenger RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. Signal transduction events were determined by Western blot. We performed K/BxN serum transfer arthritis in mice receiving a normal and a low-protein diet and analyzed arthritis clinically and histologically. RESULTS: Deprivation of AAs decreased the expression of a specific subset of genes, including the chemokines CXCL10, CCL2, and CCL5 in TNF-stimulated FLSs. Mechanistically, the presence of AAs was required for the TNF-induced activation of an interferon regulatory factor 1 (IRF1)-STAT1 signaling circuit that drives the expression of chemotactic factors. The expression of IRF1 and the IRF1-dependent gene set in FLSs was highly correlated with the presence of inflammatory cells in human RA, emphasizing the important role of this AA-dependent pathway in inflammatory cell recruitment to the synovial tissue. Finally, we show that mice receiving a low-protein diet expressed less IRF1 in the inflamed synovium and consequently developed reduced clinical and histologic signs of arthritis. CONCLUSION: AA deprivation reduces the severity of arthritis by suppressing the expression of IRF1-STAT1-driven chemokines, which are crucial for leukocyte recruitment to the arthritic joint. Overall, our study provides novel insights into critical determinants of inflammatory arthritis and may pave the way for dietary intervention trials in RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Camundongos , Animais , Sinoviócitos/metabolismo , Aminoácidos/metabolismo , Artrite Reumatoide/genética , Fator de Necrose Tumoral alfa/metabolismo , Quimiocina CXCL10/metabolismo , Aminas/metabolismo , Fibroblastos/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Células Cultivadas
2.
Ann Rheum Dis ; 82(9): 1142-1152, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344156

RESUMO

INTRODUCTION: Structural reorganisation of the synovium with expansion of fibroblast-like synoviocytes (FLS) and influx of immune cells is a hallmark of rheumatoid arthritis (RA). Activated FLS are increasingly recognised as a critical component driving synovial tissue remodelling by interacting with immune cells resulting in distinct synovial pathotypes of RA. METHODS: Automated high-content fluorescence microscopy of co-cultured cytokine-activated FLS and autologous peripheral CD4+ T cells from patients with RA was established to quantify cell-cell interactions. Phenotypic profiling of cytokine-treated FLS and co-cultured T cells was done by flow cytometry and RNA-Seq, which were integrated with publicly available transcriptomic data from patients with different histological synovial pathotypes. Computational prediction and knock-down experiments were performed in FLS to identify adhesion molecules for cell-cell interaction. RESULTS: Cytokine stimulation, especially with TNF-α, led to enhanced FLS-T cell interaction resulting in cell-cell contact-dependent activation, proliferation and differentiation of T cells. Signatures of cytokine-activated FLS were significantly enriched in RA synovial tissues defined as lymphoid-rich or leucocyte-rich pathotypes, with the most prominent effects for TNF-α. FLS cytokine signatures correlated with the number of infiltrating CD4+ T cells in synovial tissue of patients with RA. Ligand-receptor pair interaction analysis identified ICAM1 on FLS as an important mediator in TNF-mediated FLS-T cell interaction. Both, ICAM1 and its receptors were overexpressed in TNF-treated FLS and co-cultured T cells. Knock-down of ICAM1 in FLS resulted in reduced TNF-mediated FLS-T cell interaction. CONCLUSION: Our study highlights the role of cytokine-activated FLS in orchestrating inflammation-associated synovial pathotypes providing novel insights into disease mechanisms of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Citocinas , Fator de Necrose Tumoral alfa/farmacologia , Membrana Sinovial/patologia , Sinoviócitos/patologia , Fibroblastos/patologia , Células Cultivadas
3.
Rheumatology (Oxford) ; 61(11): 4535-4546, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35258553

RESUMO

OBJECTIVES: TNF-induced activation of fibroblast-like synoviocytes (FLS) is a critical determinant for synovial inflammation and joint destruction in RA. The detrimental role of TNF-receptor 1 (TNFR1) has thoroughly been characterized. The contributions of TNFR2, however, are largely unknown. This study was performed to delineate the role of TNFR2 in human FLS activation. METHODS: TNFR2 expression in synovial tissue samples was determined by immunohistochemistry. Expression of TNFR2 was silenced using RNAi or CRISPR/Cas9 technologies. Global transcriptional changes were determined by RNA-seq. QPCR, ELISA and immunoblotting were used to validate RNA-seq results and to uncover pathways operating downstream of TNFR2 in FLS. RESULTS: TNFR2 expression was increased in RA when compared with OA synovial tissues. In particular, RA-FLS demonstrated higher levels of TNFR2 when compared with OA-FLS. TNFR2 expression in RA-FLS correlated with RA disease activity, synovial T- and B-cell infiltration. TNF and IL1ß were identified as inflammatory mediators that upregulate TNFR2 in RA-FLS. Silencing of TNFR2 in RA-FLS markedly diminished the TNF-induced expression of inflammatory cytokines and chemokines, including CXCR3-binding chemokines and the B-cell activating factor TNFSF13B. Immunobiochemical analyses revealed that TNFR2-mediated expression of inflammatory mediators critically depends on STAT1. CONCLUSION: Our results define a critical role for TNFR2 in FLS-driven inflammation and unfold its participation in the unresolved course of synovial inflammation in RA.


Assuntos
Artrite Reumatoide , Receptores Tipo II do Fator de Necrose Tumoral , Sinoviócitos , Humanos , Artrite Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...