Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 78(7): 714-726, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38529539

RESUMO

Real-time analysis of fine ash in volcanic plumes, which represent magma fragments expelled from the crater during explosive eruptions, is a valuable tool for volcano monitoring and hazard assessment. To obtain the chemical characterization of the juvenile pyroclastic material emitted in volcanic plumes, many analytical techniques can be used. Among them, laser-induced breakdown spectroscopy (LIBS) is the one that can most easily be adapted to advanced applications in extreme environments. In this paper, LIBS experiments based on self-calibrated approaches are used to determine the elemental composition of suspended volcanic ash. To simulate the conditions of dispersed volcanic ash in the atmosphere, different sizes of volcanic ash samples are suspended in the air by laser-induced shockwaves in a dedicated chamber, and a parametric study is carried out to establish the optimal experimental conditions for recording usable plasma emission spectra for each ash size. The quantitative analysis is performed using a self-calibrated analytical method, including calibration-free LIBS, which is based on the calculation of the spectral radiance of a uniform plasma in local thermodynamic equilibrium. The method accounts intrinsically for self-absorption since it modifies the intensity of spectral lines and thus leads to an underestimation of the elemental fraction. An intensity calibration of the spectra based on the measurements of Fe lines intensities was also used in this work to deduce the apparatus response from the spectrum itself and avoid the use of standard calibration lamps. Results demonstrate the potential of real-time measurements of elemental fractions in volcanic ash with good agreement with the literature composition.

2.
Sci Total Environ ; 842: 156736, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716760

RESUMO

The combined use of Unmanned Aerial Vehicles (UAVs) and Structure from Motion (SfM) photogrammetry allows the collection and processing of high-resolution data on demand, which is key for the constant and detailed monitoring of the fluvial environment. In addition, through the ever-increasing development of new techniques of mapping and data processing (i.e., UAVs swarm, BVLOS flight missions, high-performance photogrammetry workflow), it is now possible to detect large areas at high-resolution, providing support for spatiotemporal insights into hydro-geomorphological processes and hazard assessment, in order to ensure an effective management and to prevent catastrophic phenomena (i.e., floods). The main goal of this paper is to use UAV-based high-resolution topographic data to constrain the probabilistic hazard assessment of extended reaches of Basento river (Basilicata, Italy). To demonstrate the influence of geomorphology and riverbed sediment on hazard assessment, a sensitivity analysis was carried out on the resolution of the UAV-derived DEMs; on the riverbed roughness coefficient resulting from photo-sieving analysis and on the morphological change detection over short-time ranges (2019-2021). We found that lower resolution DEMs lead to an increase of flooding probability (in several river cross-sections an increase even higher than 99 % resulted), and that a greater roughness coefficient involves an increase in the probability of flooding (with a maximum increase of about 9 %). Moreover, the multitemporal high-resolution outputs resulting from SfM allowed the identification of morphological changes, in short-times, caused by an anthropic modification of the river bank, which significantly affected the flooding hazard.


Assuntos
Tecnologia de Sensoriamento Remoto , Rios , Itália , Tecnologia de Sensoriamento Remoto/métodos
3.
Sci Rep ; 11(1): 21024, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697329

RESUMO

Pyroclastic density currents are ground hugging gas-particle flows associated to explosive volcanic eruptions and moving down a volcano's slope, causing devastation and deaths. Because of the hostile nature they cannot be analyzed directly and most of their fluid dynamic behavior is reconstructed by the deposits left in the geological record, which frequently show peculiar structures such as ripples and dune bedforms. Here, a set of equations is simplified to link flow behavior to particle motion and deposition. This allows to construct a phase diagram by which impact parameters of dilute pyroclastic density currents, representing important factors of hazard, can be calculated by inverting bedforms wavelength and grain size, without the need of more complex models that require extensive work in the laboratory.

4.
Sci Rep ; 11(1): 4959, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654154

RESUMO

Pyroclastic density currents are ground hugging gas-particle flows that originate from the collapse of an eruption column or lava dome. They move away from the volcano at high speed, causing devastation. The impact is generally associated with flow dynamic pressure and temperature. Little emphasis has yet been given to flow duration, although it is emerging that the survival of people engulfed in a current strongly depends on the exposure time. The AD 79 event of Somma-Vesuvius is used here to demonstrate the impact of pyroclastic density currents on humans during an historical eruption. At Herculaneum, at the foot of the volcano, the temperature and strength of the flow were so high that survival was impossible. At Pompeii, in the distal area, we use a new model indicating that the current had low strength and low temperature, which is confirmed by the absence of signs of trauma on corpses. Under such conditions, survival should have been possible if the current lasted a few minutes or less. Instead, our calculations demonstrate a flow duration of 17 min, long enough to make lethal the breathing of ash suspended in the current. We conclude that in distal areas where the mechanical and thermal effects of a pyroclastic density currents are diminished, flow duration is the key for survival.


Assuntos
Modelos Teóricos , Erupções Vulcânicas/história , História Antiga , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA