Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(14): 7269-7287, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37334829

RESUMO

Many genetic syndromes are linked to mutations in genes encoding factors that guide chromatin organization. Among them, several distinct rare genetic diseases are linked to mutations in SMCHD1 that encodes the structural maintenance of chromosomes flexible hinge domain containing 1 chromatin-associated factor. In humans, its function as well as the impact of its mutations remains poorly defined. To fill this gap, we determined the episignature associated with heterozygous SMCHD1 variants in primary cells and cell lineages derived from induced pluripotent stem cells for Bosma arhinia and microphthalmia syndrome (BAMS) and type 2 facioscapulohumeral dystrophy (FSHD2). In human tissues, SMCHD1 regulates the distribution of methylated CpGs, H3K27 trimethylation and CTCF at repressed chromatin but also at euchromatin. Based on the exploration of tissues affected either in FSHD or in BAMS, i.e. skeletal muscle fibers and neural crest stem cells, respectively, our results emphasize multiple functions for SMCHD1, in chromatin compaction, chromatin insulation and gene regulation with variable targets or phenotypical outcomes. We concluded that in rare genetic diseases, SMCHD1 variants impact gene expression in two ways: (i) by changing the chromatin context at a number of euchromatin loci or (ii) by directly regulating some loci encoding master transcription factors required for cell fate determination and tissue differentiation.


Assuntos
Microftalmia , Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Crista Neural/metabolismo , Microftalmia/genética , Eucromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , Cromatina/genética
2.
Neurol Genet ; 9(3): e200076, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37200893

RESUMO

Background and Objectives: After clinical evaluation, the molecular diagnosis of type 1 facioscapulohumeral dystrophy (FSHD1) relies in most laboratories on the detection of a shortened D4Z4 array at the 4q35 locus by Southern blotting. In many instances, this molecular diagnosis remains inconclusive and requires additional experiments to determine the number of D4Z4 units or identify somatic mosaicism, 4q-10q translocations, and proximal p13E-11 deletions. These limitations highlight the need for alternative methodologies, illustrated by the recent emergence of novel technologies such as molecular combing (MC), single molecule optical mapping (SMOM), or Oxford Nanopore-based long-read sequencing providing a more comprehensive analysis of 4q and 10q loci. Over the last decade, MC revealed a further increasing complexity in the organization of the 4q and 10q distal regions in patients with FSHD with cis-duplication of D4Z4 arrays in approximately 1%-2% of cases. Methods: By using MC, we investigated in our center 2,363 cases for molecular diagnosis of FSHD. We also evaluated whether previously reported cis-duplications might be identified by SMOM using the Bionano EnFocus FSHD 1.0 algorithm. Results: In our cohort of 2,363 samples, we identified 147 individuals carrying an atypical organization of the 4q35 or 10q26 loci. Mosaicism is the most frequent category followed by cis-duplications of the D4Z4 array. We report here chromosomal abnormalities of the 4q35 or 10q26 loci in 54 patients clinically described as FSHD, which are not present in the healthy population. In one-third of the 54 patients, these rearrangements are the only genetic defect suggesting that they might be causative of the disease. By analyzing DNA samples from 3 patients carrying a complex rearrangement of the 4q35 region, we further showed that the SMOM direct assembly of the 4q and 10q alleles failed to reveal these abnormalities and lead to negative results for FSHD molecular diagnosis. Discussion: This work further highlights the complexity of the 4q and 10q subtelomeric regions and the need of in-depth analyses in a significant number of cases. This work also highlights the complexity of the 4q35 region and interpretation issues with consequences on the molecular diagnosis of patients or genetic counseling.

3.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430443

RESUMO

McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.


Assuntos
Glicogênio Fosforilase Muscular , Doença de Depósito de Glicogênio Tipo V , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Depósito de Glicogênio Tipo V/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Glicogênio/metabolismo , Tecnologia
4.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230976

RESUMO

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model, and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of CS mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in CS mice, and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis and bioenergetics in the pathophysiology of RASopathies and suggest that patients with CS may benefit from treatment with mitochondrial modulators.


Assuntos
Síndrome de Costello , Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Homeostase , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Methods Mol Biol ; 2454: 231-239, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33368020

RESUMO

Only a limited number of large-scale protocols describe the production of mature skeletal muscle fibers from human induced pluripotent stem cells (hiPSCs). Here we describe a novel procedure for simultaneous differentiation of hiPSC into muscle cells and motor neurons, that generates innervated and contractile multinucleated skeletal muscle fibers with sarcomeric organization. Our protocol permits the production of expandable skeletal muscle progenitor cells and mature skeletal muscle fibers that can be used for the exploration of skeletal muscle differentiation for basic research, disease modeling, and drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Neurônios Motores , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas , Músculo Esquelético
6.
J Cachexia Sarcopenia Muscle ; 13(1): 621-635, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859613

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a late-onset autosomal dominant form of muscular dystrophy involving specific groups of muscles with variable weakness that precedes inflammatory response, fat infiltration, and muscle atrophy. As there is currently no cure for this disease, understanding and modelling the typical muscle weakness in FSHD remains a major milestone towards deciphering the disease pathogenesis as it will pave the way to therapeutic strategies aimed at correcting the functional muscular defect in patients. METHODS: To gain further insights into the specificity of the muscle alteration in this disease, we derived induced pluripotent stem cells from patients affected with Types 1 and 2 FSHD but also from patients affected with Bosma arhinia and microphthalmia. We differentiated these cells into contractile innervated muscle fibres and analysed their transcriptome by RNA Seq in comparison with cells derived from healthy donors. To uncover biological pathways altered in the disease, we applied MOGAMUN, a multi-objective genetic algorithm that integrates multiplex complex networks of biological interactions (protein-protein interactions, co-expression, and biological pathways) and RNA Seq expression data to identify active modules. RESULTS: We identified 132 differentially expressed genes that are specific to FSHD cells (false discovery rate < 0.05). In FSHD, the vast majority of active modules retrieved with MOGAMUN converges towards a decreased expression of genes encoding proteins involved in sarcomere organization (P value 2.63e-12 ), actin cytoskeleton (P value 9.4e-5 ), myofibril (P value 2.19e-12 ), actin-myosin sliding, and calcium handling (with P values ranging from 7.9e-35 to 7.9e-21 ). Combined with in vivo validations and functional investigations, our data emphasize a reduction in fibre contraction (P value < 0.0001) indicating that the muscle weakness that is typical of FSHD clinical spectrum might be associated with dysfunction of calcium release (P value < 0.0001), actin-myosin interactions, motor activity, mechano-transduction, and dysfunctional sarcomere contractility. CONCLUSIONS: Identification of biomarkers of FSHD muscle remain critical for understanding the process leading to the pathology but also for the definition of readouts to be used for drug design, outcome measures, and monitoring of therapies. The different pathways identified through a system biology approach have been largely overlooked in the disease. Overall, our work opens new perspectives in the definition of biomarkers able to define the muscle alteration but also in the development of novel strategies to improve muscle function as it provides functional parameters for active molecule screening.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular Facioescapuloumeral , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Sarcômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...