Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 13(10): 932-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24093546

RESUMO

The search for organic biosignatures is motivated by the hope of understanding the conditions of emergence of life on Earth and the perspective of finding traces of extinct life in martian sediments. Paramagnetic radicals, which exist naturally in amorphous carbonaceous matter fossilized in Precambrian cherts, were used as local structural probes and studied by electron paramagnetic resonance (EPR) spectroscopy. The nuclear magnetic resonance transitions of elements inside and around these radicals were detected by monitoring the nuclear modulations of electron spin echo in pulsed EPR. We found that the carbonaceous matter of fossilized microorganisms with age up to 3.5 billion years gives specific nuclear magnetic signatures of hydrogen (¹H), carbon (¹³C), and phosphorus (³¹P) nuclei. We observed that these potential biosignatures of extinct life are found neither in the carbonaceous matter of carbonaceous meteorites (4.56 billion years), the most ancient objects of the Solar System, nor in any carbonaceous matter resulting from carbonization of organic and bioorganic precursors. These results indicate that these nuclear signatures are sensitive to thermal episodes and can be used for Archean cherts with metamorphism not higher than the greenschist facies.


Assuntos
Carbono/química , Exobiologia/métodos , Sedimentos Geológicos/química , Espectroscopia de Ressonância Magnética , Meteoroides , Espectroscopia de Ressonância de Spin Eletrônica , Temperatura
2.
J Phys Chem B ; 114(10): 3714-25, 2010 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-20175553

RESUMO

The possibility of using vanadyl ions as paramagnetic biomarkers for the identification of traces of primitive life fossilized in silica rocks is studied by cw-EPR, ENDOR, HYSCORE, and DFT calculations. It is well-known that porphyrins, which are common to all living organisms, form vanadyl-porphyrin complexes in sediments deposited in oceans. However, the stability of these complexes over a very long time (more than 3 billion years) is not known. By encapsulating vanadyl-porphyrin complexes in silica synthesized by a sol-gel method to mimic SiO(2) sediments, we studied the structure and stability of these complexes upon step heating treatments by monitoring the evolution of the g factor and of the hyperfine interactions with (51)V, (1)H, (14)N, (13)C, and (29)Si nuclei. It is found that vanadyl-porphyrin complexes are progressively transformed into oxygenated vanadyl complexes by transfer of the VO(2+) ion from the porphyrin ring to the mineral matrix. The organic component is transformed into carbonaceous matter which contains paramagnetic centers (IOM(*) centers). To test the validity of this approach, we studied by EPR a 3490 million years old chert (polycrystalline SiO(2) rock) containing some of the oldest putative traces of life. This rock contains oxygenated vanadyl complexes and IOM(*) centers very similar to those found in the synthetic analogues.


Assuntos
Magnetismo , Metaloporfirinas/química , Dióxido de Silício/química , Vanadatos/química , Biomarcadores/química , Espectroscopia de Ressonância de Spin Eletrônica
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 69(5): 1301-10, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18024197

RESUMO

Insoluble organic matter (IOM) of Orgueil and Tagish Lake meteorites are studied by CW-EPR and pulsed-EPR spectroscopies. The EPR line is due to polycyclic paramagnetic moieties concentrated in defect-rich regions of the IOM, with concentrations of the order of 4x10(19) spin/g. CW-EPR reveals two types of paramagnetic defects: centres with S=1/2, and centres with S=0 ground state and thermally accessible triple state S=1. In spite of the Lorentzian shape of the EPR and its narrowing upon increasing the spin concentration, the EPR line is not in the exchange narrowing regime as previously deduced from multi-frequency CW-EPR [L. Binet, D. Gourier, Appl. Magn. Reson. 30 (2006) 207-231]. It is inhomogeneously broadened as demonstrated by the presence of nuclear modulations in the spin-echo decay. The line narrowing, similar to an exchange narrowing effect, is the result of an increasing contribution of the narrow line of the triplet state centres in addition to the broader line of doublet states. Hyperfine sublevel correlation spectroscopy (HYSCORE) of hydrogen and (13)C nuclei indicates that IOM* centres are small polycyclic moieties that are moderately branched with aliphatic chains, as shown by the presence of aromatic hydrogen atoms. On the contrary the lack of such aromatic hydrogen in triplet states suggests that these radicals are most probably highly branched. Paramagnetic centres are considerably enriched in deuterium, with D/H approximately 1.5+/-0.5x10(-2) of the order of values existing in interstellar medium.


Assuntos
Carbono/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Meteoroides , Isótopos de Carbono , Deutério , Água Doce , Magnetismo , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA