Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 11(3): 194, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188841

RESUMO

Radiotherapeutic treatment consists of targeted application of radiation beams to a tumor but exposure of surrounding healthy tissue is inevitable. In the brain, ionizing radiation induces breakdown of the blood-brain barrier by effects on brain microvascular endothelial cells. Damage from directly irradiated cells can be transferred to surrounding non-exposed bystander cells, known as the radiation-induced bystander effect. We investigated involvement of connexin channels and paracrine signaling in radiation-induced bystander DNA damage in brain microvascular endothelial cells exposed to focused X-rays. Irradiation caused DNA damage in the directly exposed area, which propagated over several millimeters in the bystander area. DNA damage was significantly reduced by the connexin channel-targeting peptide Gap26 and the Cx43 hemichannel blocker TAT-Gap19. ATP release, dye uptake, and patch clamp experiments showed that hemichannels opened within 5 min post irradiation in both irradiated and bystander areas. Bystander signaling involved cellular Ca2+ dynamics and IP3, ATP, ROS, and NO signaling, with Ca2+, IP3, and ROS as crucial propagators of DNA damage. We conclude that bystander effects are communicated by a concerted cascade involving connexin channels, and IP3/Ca2+, ATP, ROS, and NO as major contributors of regenerative signal expansion.


Assuntos
Trifosfato de Adenosina/metabolismo , Encéfalo/irrigação sanguínea , Conexina 43/metabolismo , Dano ao DNA , Células Endoteliais/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células Endoteliais/efeitos da radiação , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Transdução de Sinais
2.
J Immunol ; 204(4): 775-787, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900335

RESUMO

Immunogenic cell death (ICD) occurs when a dying cell releases cytokines and damage-associated molecular patterns, acting as adjuvants, and expresses Ags that induce a specific antitumor immune response. ICD is studied mainly in the context of regulated cell death pathways, especially caspase-mediated apoptosis marked by endoplasmic reticulum stress and calreticulin exposure and, more recently, also in relation to receptor-interacting protein kinase-driven necroptosis, whereas unregulated cell death like accidental necrosis is nonimmunogenic. Importantly, the murine cancer cell lines used in ICD studies often express virally derived peptides that are recognized by the immune system as tumor-associated Ags. However, it is unknown how different cell death pathways may affect neoepitope cross-presentation and Ag recognition of cancer cells. We used a prophylactic tumor vaccination model and observed that both apoptotic and necroptotic colon carcinoma CT26 cells efficiently immunized mice against challenge with a breast cancer cell line that expresses the same immunodominant tumor Ag, AH1, but only necroptotic CT26 cells would mount an immune response against CT26-specific neoepitopes. By CRISPR/Cas9 genome editing, we knocked out AH1 and saw that only necroptotic CT26 cells were still able to protect mice against tumor challenge. Hence, in this study, we show that endogenous AH1 tumor Ag expression can mask the strength of immunogenicity induced by different cell death pathways and that upon knockout of AH1, necroptosis was more immunogenic than apoptosis in a prophylactic tumor vaccination model. This work highlights necroptosis as a possible preferred ICD form over apoptosis in the treatment of cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Apoptose/imunologia , Epitopos Imunodominantes/imunologia , Necroptose/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
3.
Sci Rep ; 9(1): 16623, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719598

RESUMO

Upon intravenous injection of tumour necrosis factor (TNF) in mice, a systemic inflammatory response syndrome (SIRS) is initiated, characterized by an acute cytokine storm and induction of vascular hyperpermeability. Connexin43 hemichannels have been implicated in various pathological conditions, e.g. ischemia and inflammation, and can lead to detrimental cellular outcomes. Here, we explored whether targeting connexin43 hemichannels could alleviate TNF-induced endothelial barrier dysfunction and lethality in SIRS. Therefore, we verified whether administration of connexin43-targeting-peptides affected survival, body temperature and vascular permeability in vivo. In vitro, TNF-effects on connexin43 hemichannel function were investigated by single-channel studies and Ca2+-imaging. Blocking connexin43 hemichannels with TAT-Gap19 protected mice against TNF-induced mortality, hypothermia and vascular leakage, while enhancing connexin43 hemichannel function with TAT-CT9 provoked opposite sensitizing effects. In vitro patch-clamp studies revealed that TNF acutely activated connexin43 hemichannel opening in endothelial cells, which was promoted by CT9, and inhibited by Gap19 and intracellular Ca2+-buffering. In vivo experiments aimed at buffering intracellular Ca2+, and pharmacologically targeting Ca2+/calmodulin-dependent protein kinase-II, a known modulator of endothelial barrier integrity, demonstrated their involvement in permeability alterations. Our results demonstrate significant benefits of inhibiting connexin43 hemichannels to counteract TNF-induced SIRS-associated vascular permeability and lethality.


Assuntos
Conexina 43/antagonistas & inibidores , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Fator de Necrose Tumoral alfa/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Quimiocinas/metabolismo , Conexina 43/metabolismo , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/prevenção & controle , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
Trends Mol Med ; 24(12): 1036-1053, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424929

RESUMO

Connexins, in particular connexin 43 (Cx43), function as gap junction channels (GJCs) and hemichannels (HCs). Only recently, specific tools have been developed to study their pleiotropic functions. Based on various protein interaction sites, distinct connexin-mimetic peptides have been established that enable discrimination between the function of HCs and GJCs. Although the precise mechanism of action of most of these peptides is still a matter of debate, an increasing number of studies report on important effects of those compounds in disease models. In this review, we summarize the structure, life cycle, and the most important physiological and pathological functions of both connexin GJCs and HCs. We provide a critical overview on the use of connexin-targeting peptides, in particular targeting Cx43, with a special focus on the remaining questions and hurdles to be taken in the research field of connexin channels.


Assuntos
Conexinas/metabolismo , Animais , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Humanos
5.
J Nucl Med ; 59(7): 1140-1145, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29419481

RESUMO

Systemic inflammatory response syndrome (SIRS) is an inflammatory state affecting the whole body. It is associated with the presence of pro- and antiinflammatory cytokines in serum, including tumor necrosis factor (TNF). TNF has multiple effects and leads to cytokine production, leukocyte infiltration, and blood pressure reduction and coagulation, thereby contributing to tissue damage and organ failure. A sterile mouse model of sepsis, TNF-induced SIRS, was used to visualize the temporal and spatial distribution of damage in susceptible tissues during SIRS. For this, a radiopharmaceutical agent, 99mTc-duramycin, that binds to exposed phosphatidylethanolamine on dying cells was longitudinally visualized using SPECT/CT imaging. Methods: C57BL/6J mice were challenged with intravenous injections of murine TNF or vehicle, and necrostatin-1 was used to interfere with cell death. Two hours after vehicle or TNF treatment, mice received 99mTc-duramycin intravenously (35.44 ± 3.80 MBq). Static whole-body 99mTc-duramycin SPECT/CT imaging was performed 2, 4, and 6 h after tracer injection. Tracer uptake in different organs was quantified by volume-of-interest analysis using PMOD software and expressed as SUVmean After the last scan, ex vivo biodistribution was performed to validate the SPECT imaging data. Lastly, terminal deoxynucleotidyl-transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining was performed to correlate the obtained results to cell death. Results: An increased 99mTc-duramycin uptake was detected in mice injected with TNF, when compared with control mice, in lungs (0.55 ± 0.1 vs. 0.34 ± 0.05), intestine (0.75 ± 0.13 vs. 0.56 ± 0.1), and liver (1.03 ± 0.14 vs. 0.64 ± 0.04) 4 h after TNF and remained significantly elevated until 8 h after TNF. The imaging results were consistent with ex vivo γ-counting results. Significantly increased levels of tissue damage were detected via TUNEL staining in the lungs and intestine of mice injected with TNF. Interestingly, necrostatin-1 pretreatment conferred protection against lethal SIRS and reduced the 99mTc-duramycin uptake in the lungs 8 h after TNF (SUV, 0.32 ± 0.1 vs. 0.51 ± 0.15). Conclusion: This study demonstrated that noninvasive 99mTc-duramycin SPECT imaging can be used to characterize temporal and spatial kinetics of injury and cell death in susceptible tissues during TNF-induced SIRS, making it useful for global, whole-body assessment of tissue damage during diseases associated with inflammation and injury.


Assuntos
Bacteriocinas , Morte Celular/efeitos dos fármacos , Compostos de Organotecnécio , Fosfatidiletanolaminas/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico por imagem , Síndrome de Resposta Inflamatória Sistêmica/patologia , Fator de Necrose Tumoral alfa/efeitos adversos , Imagem Corporal Total , Animais , Bacteriocinas/metabolismo , Transporte Biológico/efeitos dos fármacos , Imidazóis/farmacologia , Indóis/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Compostos de Organotecnécio/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Síndrome de Resposta Inflamatória Sistêmica/induzido quimicamente , Síndrome de Resposta Inflamatória Sistêmica/metabolismo
6.
Nat Cell Biol ; 19(10): 1237-1247, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28920952

RESUMO

TNF is a master proinflammatory cytokine whose pathogenic role in inflammatory disorders can, in certain conditions, be attributed to RIPK1 kinase-dependent cell death. Survival, however, is the default response of most cells to TNF stimulation, indicating that cell demise is normally actively repressed and that specific checkpoints must be turned off for cell death to proceed. We identified RIPK1 as a direct substrate of MK2 in the TNFR1 signalling pathway. Phosphorylation of RIPK1 by MK2 limits cytosolic activation of RIPK1 and the subsequent assembly of the death complex that drives RIPK1 kinase-dependent apoptosis and necroptosis. In line with these in vitro findings, MK2 inactivation greatly sensitizes mice to the cytotoxic effects of TNF in an acute model of sterile shock caused by RIPK1-dependent cell death. In conclusion, we identified MK2-mediated RIPK1 phosphorylation as an important molecular mechanism limiting the sensitivity of the cells to the cytotoxic effects of TNF.


Assuntos
Apoptose/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Choque/induzido quimicamente , Fator de Necrose Tumoral alfa/toxicidade , Animais , Linhagem Celular , Citosol/enzimologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Fibroblastos/enzimologia , Fibroblastos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Serina , Choque/enzimologia , Choque/patologia , Choque/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
7.
Cell Death Differ ; 24(6): 1100-1110, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28452996

RESUMO

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes a state of cellular stress known as ER stress. The cells respond to ER stress by activating the unfolded protein response (UPR), a signaling network emerging from the ER-anchored receptors IRE1α, PERK and ATF6. The UPR aims at restoring ER protein-folding homeostasis, but turns into a toxic signal when the stress is too severe or prolonged. Recent studies have demonstrated links between the UPR and inflammation. Consequently, small molecule inhibitors of IRE1α and PERK have become attractive tools for the potential therapeutic manipulation of the UPR in inflammatory conditions. TNF is a master pro-inflammatory cytokine that drives inflammation either directly by promoting gene activation, or indirectly by inducing RIPK1 kinase-dependent cell death, in the form of apoptosis or necroptosis. To evaluate the potential contribution of the UPR to TNF-induced cell death, we tested the effects of two commonly used PERK inhibitors, GSK2606414 and GSK2656157. Surprisingly, we observed that both compounds completely repressed TNF-mediated RIPK1 kinase-dependent death, but found that this effect was independent of PERK inactivation. Indeed, these two compounds turned out to be direct RIPK1 inhibitors, with comparable potency to the recently developed RIPK1 inhibitor GSK'963 (about 100 times more potent than NEC-1s). Importantly, these compounds completely inhibited TNF-mediated RIPK1-dependent cell death at a concentration that did not affect PERK activity in cells. In vivo, GSK2656157 administration protected mice from lethal doses of TNF independently of PERK inhibition and as efficiently as GSK'963. Together, our results not only report on new and very potent RIPK1 inhibitors but also highlight the risk of misinterpretation when using these two PERK inhibitors in the context of ER stress, cell death and inflammation.


Assuntos
Adenina/análogos & derivados , Apoptose/efeitos dos fármacos , Indóis/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Adenina/farmacologia , Animais , Linhagem Celular , Camundongos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/antagonistas & inibidores
8.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1099-1120, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28193563

RESUMO

Although radiotherapy is commonly used to treat cancer, its beneficial outcome is frequently hampered by the radiation resistance of tumor cells and adverse reactions in normal tissues. Mechanisms of cell-to-cell communication and how intercellular signals are translated into cellular responses, have become topics of intense investigation, particularly within the field of radiobiology. A substantial amount of evidence is available demonstrating that both gap junctional and paracrine communication pathways can propagate radiation-induced biological effects at the intercellular level, commonly referred to as radiation-induced bystander effects (RIBE). Multiple molecular signaling mechanisms involving oxidative stress, kinases, inflammatory molecules, and Ca2+ are postulated to contribute to RIBE. Ca2+ is a highly versatile and ubiquitous second messenger that regulates diverse cellular processes via the interaction with various signaling cascades. It furthermore provides a fast system for the dissemination of information at the intercellular level. Channels formed by transmembrane connexin (Cx) proteins, i.e. hemichannels and gap junction channels, can mediate the cell-to-cell propagation of increases in intracellular Ca2+ by ministering paracrine and direct cell-cell communication, respectively. We here review current knowledge on radiation-induced signaling mechanisms in irradiated and bystander cells, particularly focusing on the contribution of oxidative stress, Ca2+ and Cx channels. By illustrating the tight interplay between these different partners, we provide a conceptual framework for intercellular Ca2+ signaling as a key player in modulating the RIBE and the overall response to radiation.


Assuntos
Cálcio/metabolismo , Conexinas/metabolismo , Estresse Oxidativo , Radioterapia , Sinalização do Cálcio , Humanos , Espécies Reativas de Oxigênio/metabolismo
9.
Cell Rep ; 15(2): 274-87, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27050509

RESUMO

Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.


Assuntos
Antineoplásicos/imunologia , Apoptose , Imunidade , Neoplasias/imunologia , Vacinação , Alarminas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Apresentação Cruzada/efeitos dos fármacos , Apresentação Cruzada/imunologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Ligantes , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Necrose , Fagocitose/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Tetraciclina/farmacologia
10.
Biochim Biophys Acta ; 1833(7): 1772-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23291251

RESUMO

Research conducted over the past two decades has provided convincing evidence that cell death, and more specifically apoptosis, can exceed single cell boundaries and can be strongly influenced by intercellular communication networks. We recently reported that gap junctions (i.e. channels directly connecting the cytoplasm of neighboring cells) composed of connexin43 or connexin26 provide a direct pathway to promote and expand cell death, and that inositol 1,4,5-trisphosphate (IP3) diffusion via these channels is crucial to provoke apoptosis in adjacent healthy cells. However, IP3 itself is not sufficient to induce cell death and additional factors appear to be necessary to create conditions in which IP3 will exert proapoptotic effects. Although IP3-evoked Ca(2+) signaling is known to be required for normal cell survival, it is also actively involved in apoptosis induction and progression. As such, it is evident that an accurate fine-tuning of this signaling mechanism is crucial for normal cell physiology, while a malfunction can lead to cell death. Here, we review the role of IP3 as an intracellular and intercellular cell death messenger, focusing on the endoplasmic reticulum-mitochondrial synapse, followed by a discussion of plausible elements that can convert IP3 from a physiological molecule to a killer substance. Finally, we highlight several pathological conditions in which anomalous intercellular IP3/Ca(2+) signaling might play a role. This article is part of a Special Issue entitled:12th European Symposium on Calcium.


Assuntos
Sinalização do Cálcio/fisiologia , Comunicação Celular , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Animais , Conexina 26 , Conexinas , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...