Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984754

RESUMO

Dendritic cells (DCs) are essential immune cells for defense against external pathogens. Upon activation, DCs undergo profound metabolic alterations whose precise nature remains poorly studied at a large scale and is thus far from being fully understood. The goal of the present work was to develop a reliable and accurate untargeted metabolomics workflow to get a deeper insight into the metabolism of DCs when exposed to an infectious agent (lipopolysaccharide, LPS, was used to mimic bacterial infection). As DCs transition rapidly from a non-adherent to an adherent state upon LPS exposure, one of the leading analytical challenges was to implement a single protocol suitable for getting comparable metabolomic snapshots of those two cellular states. Thus, a thoroughly optimized and robust sample preparation method consisting of a one-pot solvent-assisted method for the simultaneous cell lysis/metabolism quenching and metabolite extraction was first implemented to measure intracellular DC metabolites in an unbiased manner. We also placed special emphasis on metabolome coverage and annotation by using a combination of hydrophilic interaction liquid chromatography and reverse phase columns coupled to high-resolution mass spectrometry in conjunction with an in-house developed spectral database to identify metabolites at a high confidence level. Overall, we were able to characterize up to 171 unique meaningful metabolites in DCs. We then preliminarily compared the metabolic profiles of DCs derived from monocytes of 12 healthy donors upon in vitro LPS activation in a time-course experiment. Interestingly, the resulting data revealed differential and time-dependent activation of some particular metabolic pathways, the most impacted being nucleotides, nucleotide sugars, polyamines pathways, the TCA cycle, and to a lesser extent, the arginine pathway.

2.
J Mass Spectrom ; 57(10): e4885, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36199270

RESUMO

Oligosaccharides have multiple functions essential for health. Derived from the condensation of two to several monosaccharides, they are structurally diverse with many co-occurring structural isomer families, which make their characterization difficult. Thanks to its ability to separate small molecules based on their mass, size, shape, and charge, ion mobility-mass spectrometry (IM-MS) has emerged as a powerful tool for separating glycan isomers. Here, the potential of such a technique for the rapid characterization of main human milk oligosaccharides (HMOs) was investigated. Our study focused on 18 HMO standards. The IM-MS analysis enabled to distinguish almost all the HMOs studied, in particular thanks to the single ion mobility monitoring acquisition using the trapped ion mobility spectrometry device, providing high ion mobility resolution and enhanced ion mobility separation. Alternatively, the combination of IM-MS separation with MS/MS experiments has proven to increase performance in identifying HMOs and especially isomers poorly separated by ion mobility alone. Finally, collision cross-section values are provided for each species generated from the 18 HMOs standards, which can serve as an additional identifier to characterize HMOs.


Assuntos
Espectrometria de Mobilidade Iônica , Leite Humano , Humanos , Leite Humano/química , Monossacarídeos/análise , Oligossacarídeos/química , Polissacarídeos/análise , Espectrometria de Massas em Tandem/métodos
3.
Mass Spectrom Rev ; 41(5): 695-721, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33492707

RESUMO

Metabolomics has become increasingly popular in recent years for many applications ranging from clinical diagnosis, human health to biotechnological questioning. Despite technological advances, metabolomic studies are still currently limited by the difficulty of identifying all metabolites, a class of compounds with great chemical diversity. Although lengthy chromatographic analyses are often used to obtain comprehensive data, many isobar and isomer metabolites still remain unresolved, which is a critical point for the compound identification. Currently, ion mobility spectrometry is being explored in metabolomics as a way to improve metabolome coverage, analysis throughput and isomer separation. In this review, all the steps of a typical workflow for untargeted metabolomics are discussed considering the use of an ion mobility instrument. An overview of metabolomics is first presented followed by a brief description of ion mobility instrumentation. The ion mobility potential for complex mixture analysis is discussed regarding its coupling with a mass spectrometer alone, providing gas-phase separation before mass analysis as well as its combination with different separation platforms (conventional hyphenation but also multidimensional ion mobility couplings), offering multidimensional separation. Various instrumental and analytical conditions for improving the ion mobility separation are also described. Finally, data mining, including software packages and visualization approaches, as well as the construction of ion mobility databases for the metabolite identification are examined.


Assuntos
Espectrometria de Mobilidade Iônica , Metabolômica , Humanos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Metaboloma , Metabolômica/métodos , Fluxo de Trabalho
4.
Anal Chim Acta ; 1180: 338878, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34538323

RESUMO

The microbiome and immune system of infants are shaped by various bioactive components of human breastmilk, notably human milk oligosaccharides (HMOs). HMOs represent the third component of breastmilk and exhibit extremely high structural diversity with many isomers. Here, we propose a high throughput and high resolution approach to characterize main oligosaccharides present in breastmilk with high identification level thanks to ion mobility spectrometry. Four pairs of standard HMO isomers, that are (LNT/LNnT), (LNFP I/LNFP V), (3'-SL/6'-SL) and (2'-FL/3-FL), were first investigated under both positive and negative ionization mode using direct introduction-trapped ion mobility spectrometry-time-of-flight mass spectrometry (TIMS-TOF). By examining all the ionic species formed (i.e. protonated and deprotonated ions as well as adduct species), every isomer pair could be distinguished through the separation of at least one species, even with a small difference in collision cross section values (as small as 1.5%) thanks to the flexible resolution capacity of the TIMS instrument. Although multiple mobility peaks resulting from different glycan anomeric conformers, open-ring and/or different ionic isomer structures (i.e. various charge site locations), could be observed for some HMO species. The reduction at the reducing-end of HMOs did not significantly facilitate the isomer distinction. Finally, the unambiguous identification of the studied HMOs in a breastmilk sample showed the potential of the approach combining ion mobility separation and MS/MS experiments for high throughput distinction of HMO isomers in complex breastmilk samples without laborious sample preparation.


Assuntos
Espectrometria de Mobilidade Iônica , Leite Humano , Humanos , Isomerismo , Oligossacarídeos , Espectrometria de Massas em Tandem
5.
Rapid Commun Mass Spectrom ; 34(24): e8928, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32833266

RESUMO

RATIONALE: Isomer metabolites are involved in metabolic pathways, and their characterization is essential but remains challenging even using high-performance analytical platforms. The addition of ion mobility prior to mass analysis can help to separate isomers. Here, the ability of a recently developed trapped ion mobility spectrometry system to separate metabolite isomers was examined. METHODS: Three pairs of estrogen isomers were studied as a model of isomeric metabolites under both negative and positive electrospray ionization (ESI) modes using a commercial trapped ion mobility spectrometry-TOF mass spectrometer. The standard metabolites were also spiked into human urine to evaluate the efficiency of trapped ion mobility spectrometry to separate isomers in complex mixtures. RESULTS: The estradiol glucuronide isomers (E2 ß-3G and E2 ß-17G) could be distinguished as deprotonated species, while the estradiol epimers (E2 ß and E2 α) and the methoxyestradiol isomers (2-MeO-E2 ß and 4-MeO-E2 ß) were separated as lithiated adducts in positive ionization mode. When performing analyses in the urine matrix, no alteration in the ion mobility resolving power was observed and the measured collision cross section (CCS) values varied by less than 1.0%. CONCLUSIONS: The trapped ion mobility spectrometry-TOF mass spectrometer enabled the separation of the metabolite isomers with very small differences in CCS values (ΔCCS% = 2%). It is shown to be an effective tool for the rapid characterization of isomers in complex matrices.


Assuntos
Estrogênios , Espectrometria de Massas/métodos , Estrogênios/química , Estrogênios/isolamento & purificação , Estrogênios/urina , Humanos , Isomerismo
6.
Ann Rheum Dis ; 79(11): 1506-1514, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32699039

RESUMO

OBJECTIVE: Macrophage activation by monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals mediates an interleukin (IL)-1ß-dependent inflammation during gout and pseudo-gout flare, respectively. Since metabolic reprogramming of macrophages goes along with inflammatory responses dependently on stimuli and tissue environment, we aimed to decipher the role of glycolysis and oxidative phosphorylation in the IL-1ß-induced microcrystal response. METHODS: Briefly, an in vitro study (metabolomics and real-time extracellular flux analysis) on MSU and CPP crystal-stimulated macrophages was performed to demonstrate the metabolic phenotype of macrophages. Then, the role of aerobic glycolysis in IL-1ß production was evaluated, as well in vitro as in vivo using 18F-fluorodeoxyglucose positron emission tomography imaging and glucose uptake assay, and molecular approach of glucose transporter 1 (GLUT1) inhibition. RESULTS: We observed that MSU and CPP crystals led to a metabolic rewiring toward the aerobic glycolysis pathway explained by an increase in GLUT1 plasma membrane expression and glucose uptake on macrophages. Also, neutrophils isolated from human synovial fluid during gout flare expressed GLUT1 at their plasma membrane more frequently than neutrophils isolated from bloodstream. Both glucose deprivation and treatment with either 2-deoxyglucose or GLUT1 inhibitor suppressed crystal-induced NLRP3 activation and IL-1ß production, and microcrystal inflammation in vivo. CONCLUSION: In conclusion, we demonstrated that GLUT1-mediated glucose uptake is instrumental during the inflammatory IL-1ß response induced by MSU and CPP crystals. These findings open new therapeutic paths to modulate crystal-related inflammation.


Assuntos
Pirofosfato de Cálcio , Gota/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Ácido Úrico , Animais , Pirofosfato de Cálcio/imunologia , Pirofosfato de Cálcio/metabolismo , Pirofosfato de Cálcio/farmacologia , Transportador de Glucose Tipo 1/imunologia , Transportador de Glucose Tipo 1/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Gota/imunologia , Humanos , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/imunologia , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...