Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 26(23): 4699-4714, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973667

RESUMO

Intellectual Disability is a common and heterogeneous disorder characterized by limitations in intellectual functioning and adaptive behaviour, whose molecular mechanisms remain largely unknown. Among the numerous genes found to be involved in the pathogenesis of intellectual disability, 10% are located on the X-chromosome. We identified a missense mutation (c.236 C > G; p.S79W) in the SYN1 gene coding for synapsin I in the MRX50 family, affected by non-syndromic X-linked intellectual disability. Synapsin I is a neuronal phosphoprotein involved in the regulation of neurotransmitter release and neuronal development. Several mutations in SYN1 have been identified in patients affected by epilepsy and/or autism. The S79W mutation segregates with the disease in the MRX50 family and all affected members display intellectual disability as sole clinical manifestation. At the protein level, the S79W Synapsin I mutation is located in the region of the B-domain involved in recognition of highly curved membranes. Expression of human S79W Synapsin I in Syn1 knockout hippocampal neurons causes aberrant accumulation of small clear vesicles in the soma, increased clustering of synaptic vesicles at presynaptic terminals and increased frequency of excitatory spontaneous release events. In addition, the presence of S79W Synapsin I strongly reduces the mobility of synaptic vesicles, with possible implications for the regulation of neurotransmitter release and synaptic plasticity. These results implicate SYN1 in the pathogenesis of non-syndromic intellectual disability, showing that alterations of synaptic vesicle trafficking are one possible cause of this disease, and suggest that distinct mutations in SYN1 may lead to distinct brain pathologies.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação de Sentido Incorreto , Sinapsinas/genética , Vesículas Sinápticas/genética , Animais , Sequência de Bases , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Knockout , Mutação , Neurogênese/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Linhagem , Terminações Pré-Sinápticas/metabolismo , Cultura Primária de Células , Transporte Proteico , Sinapsinas/metabolismo , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA