Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890312

RESUMO

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Assuntos
Acetamidas , Antimaláricos , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Acetamidas/farmacologia , Acetamidas/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Antimaláricos/farmacologia , Antimaláricos/química , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mutação , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Humanos , Resistência a Medicamentos/genética , Resistência a Medicamentos/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos
2.
Artif Intell Med ; 147: 102700, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184363

RESUMO

BACKGROUND: The search for new antimalarial treatments is urgent due to growing resistance to existing therapies. The Open Source Malaria (OSM) project offers a promising starting point, having extensively screened various compounds for their effectiveness. Further analysis of the chemical space surrounding these compounds could provide the means for innovative drugs. METHODS: We report an optimisation-based method for quantitative structure-activity relationship (QSAR) modelling that provides explainable modelling of ligand activity through a mathematical programming formulation. The methodology is based on piecewise regression principles and offers optimal detection of breakpoint features, efficient allocation of samples into distinct sub-groups based on breakpoint feature values, and insightful regression coefficients. Analysis of OSM antimalarial compounds yields interpretable results through rules generated by the model that reflect the contribution of individual fingerprint fragments in ligand activity prediction. Using knowledge of fragment prioritisation and screening of commercially available compound libraries, potential lead compounds for antimalarials are identified and evaluated experimentally via a Plasmodium falciparum asexual growth inhibition assay (PfGIA) and a human cell cytotoxicity assay. CONCLUSIONS: Three compounds are identified as potential leads for antimalarials using the methodology described above. This work illustrates how explainable predictive models based on mathematical optimisation can pave the way towards more efficient fragment-based lead discovery as applied in malaria.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Ligantes , Malária/tratamento farmacológico
3.
PLoS Pathog ; 19(10): e1011711, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801466

RESUMO

Preventing parasite transmission from humans to mosquitoes is recognised to be critical for achieving elimination and eradication of malaria. Consequently developing new antimalarial drugs with transmission-blocking properties is a priority. Large screening campaigns have identified many new transmission-blocking molecules, however little is known about how they target the mosquito-transmissible Plasmodium falciparum stage V gametocytes, or how they affect their underlying cell biology. To respond to this knowledge gap, we have developed a machine learning image analysis pipeline to characterise and compare the cellular phenotypes generated by transmission-blocking molecules during male gametogenesis. Using this approach, we studied 40 molecules, categorising their activity based upon timing of action and visual effects on the organisation of tubulin and DNA within the cell. Our data both proposes new modes of action and corroborates existing modes of action of identified transmission-blocking molecules. Furthermore, the characterised molecules provide a new armoury of tool compounds to probe gametocyte cell biology and the generated imaging dataset provides a new reference for researchers to correlate molecular target or gene deletion to specific cellular phenotype. Our analysis pipeline is not optimised for a specific organism and could be applied to any fluorescence microscopy dataset containing cells delineated by bounding boxes, and so is potentially extendible to any disease model.


Assuntos
Antimaláricos , Culicidae , Malária Falciparum , Malária , Humanos , Animais , Masculino , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Biologia , Malária Falciparum/parasitologia
4.
ACS Infect Dis ; 9(9): 1695-1710, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639221

RESUMO

With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.


Assuntos
Parasitos , Animais , Plasmodium falciparum/genética , Saúde Global , Eritrócitos , Transporte Proteico , Furanos
5.
Dis Model Mech ; 16(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715290

RESUMO

Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.


Assuntos
Malária , Plasmodium , Animais , Masculino , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/metabolismo
6.
Antimicrob Agents Chemother ; 65(11): e0031121, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460304

RESUMO

Novel bis-1,2,4-triazine compounds with potent in vitro activity against Plasmodium falciparum parasites were recently identified. The bis-1,2,4-triazines represent a unique antimalarial pharmacophore and are proposed to act by a novel but as-yet-unknown mechanism of action. This study investigated the activity of the bis-1,2,4-triazine MIPS-0004373 across the mammalian life cycle stages of the parasite and profiled the kinetics of activity against blood and transmission stage parasites in vitro and in vivo. MIPS-0004373 demonstrated rapid and potent activity against P. falciparum, with excellent in vitro activity against all asexual blood stages. Prolonged in vitro drug exposure failed to generate stable resistance de novo, suggesting a low propensity for the emergence of resistance. Excellent activity was observed against sexually committed ring stage parasites, but activity against mature gametocytes was limited to inhibiting male gametogenesis. Assessment of liver stage activity demonstrated good activity in an in vitro P. berghei model but no activity against Plasmodium cynomolgi hypnozoites or liver schizonts. The bis-1,2,4-triazine MIPS-0004373 efficiently cleared an established P. berghei infection in vivo, with efficacy similar to that of artesunate and chloroquine and a recrudescence profile comparable to that of chloroquine. This study demonstrates the suitability of bis-1,2,4-triazines for further development toward a novel treatment for acute malaria.


Assuntos
Malária , Parasitos , Animais , Malária/tratamento farmacológico , Masculino , Plasmodium berghei , Triazinas/farmacologia
7.
Sci Rep ; 11(1): 1888, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479319

RESUMO

New antimalarial therapeutics are needed to ensure that malaria cases continue to be driven down, as both emerging parasite resistance to frontline chemotherapies and mosquito resistance to current insecticides threaten control programmes. Plasmodium, the apicomplexan parasite responsible for malaria, causes disease pathology through repeated cycles of invasion and replication within host erythrocytes (the asexual cycle). Antimalarial drugs primarily target this cycle, seeking to reduce parasite burden within the host as fast as possible and to supress recrudescence for as long as possible. Intense phenotypic drug screening efforts have identified a number of promising new antimalarial molecules. Particularly important is the identification of compounds with new modes of action within the parasite to combat existing drug resistance and suitable for formulation of efficacious combination therapies. Here we detail the antimalarial properties of DDD01034957-a novel antimalarial molecule which is fast-acting and potent against drug resistant strains in vitro, shows activity in vivo, and possesses a resistance mechanism linked to the membrane transporter PfABCI3. These data support further medicinal chemistry lead-optimization of DDD01034957 as a novel antimalarial chemical class and provide new insights to further reduce in vivo metabolic clearance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Eritrócitos/parasitologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Malária/parasitologia , Camundongos , Estrutura Molecular , Plasmodium/efeitos dos fármacos , Plasmodium/parasitologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/parasitologia , Plasmodium falciparum/fisiologia , Especificidade da Espécie
8.
Artigo em Inglês | MEDLINE | ID: mdl-33139275

RESUMO

Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.


Assuntos
Antimaláricos , Artemisininas , Culicidae , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Sudeste Asiático , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Plasmodium falciparum/genética
9.
J Med Chem ; 63(5): 2240-2262, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31490680

RESUMO

Malaria is still a leading cause of mortality among children in the developing world, and despite the immense progress made in reducing the global burden, further efforts are needed if eradication is to be achieved. In this context, targeting transmission is widely recognized as a necessary intervention toward that goal. After carrying out a screen to discover new transmission-blocking agents, herein we report our medicinal chemistry efforts to study the potential of the most robust hit, DDD01035881, as a male-gamete targeted compound. We reveal key structural features for the activity of this series and identify analogues with greater potency and improved metabolic stability. We believe this study lays the groundwork for further development of this series as a transmission blocking agent.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Malária/transmissão , Plasmodium falciparum/efeitos dos fármacos , Animais , Descoberta de Drogas , Feminino , Células Germinativas/efeitos dos fármacos , Células Hep G2 , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle , Masculino , Camundongos , Plasmodium falciparum/citologia , Relação Estrutura-Atividade
10.
Arch Dis Child ; 104(12): 1138-1142, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31744794

RESUMO

OBJECTIVE: The global impact of artemisinin-based combination therapies on malaria-associated mortality and their origins in ancient Chinese medicine has heightened interest in the natural discovery of future antimalarials. METHODS: A double-blind study to identify potential ingredients with antimalarial activity from traditional remedies with reported antipyretic properties. Recipes of clear broths, passed down by tradition in families of diverse ethnic origin, were sourced by school children. Broths were then tested for their ability to arrest malaria parasite asexual growth or sexual stage development in vitro. Clear broth extract was incubated with in vitro cultures of Plasmodium falciparum asexual or mature sexual stage cultures and assayed for parasite viability after 72 hours. RESULTS: Of the 56 broths tested, 5 were found to give >50% in vitro growth inhibition against P. falciparum asexual blood stages, with 2 having comparable inhibition to that seen with dihydroartemisinin, a leading antimalarial. Four other broths were found to have >50% transmission blocking activity, preventing male parasite sexual stage development. After unblinding, two active broths were found to be from siblings from different classes, who had brought in the same vegetarian soup, demonstrating assay robustness. CONCLUSIONS: This screening approach succeeded in finding broths with activity against malaria parasite in vitro growth, arising from complex vegetable and/or meat-based broths. This represented a successful child education exercise, in teaching about the interface between natural remedies, traditional medicine and evidence-based drug discovery.


Assuntos
Antipiréticos/farmacologia , Artemisininas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Malária Falciparum/dietoterapia , Medicina Tradicional Chinesa , Plasmodium falciparum/efeitos dos fármacos , Criança , Método Duplo-Cego , Alimentos , Humanos , Malária Falciparum/prevenção & controle , Carne , Verduras
11.
Curr Opin Chem Biol ; 50: 1-9, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875617

RESUMO

In recent years, the research agenda to tackle global morbidity and mortality from malaria disease has shifted towards innovation, in the hope that efforts at the frontiers of scientific research may re-invigorate gains made towards eradication. Discovery of new antimalarial drugs with novel chemotypes or modes of action lie at the heart of these efforts. There is a particular interest in drug candidates that target stages of the malaria parasite lifecycle beyond the symptomatic asexual blood stages. This is especially important given the spectre of emerging drug resistance to all current frontline antimalarials. One approach gaining increased interest is the potential of designing novel drugs that target parasite passage from infected individual to feeding mosquito and back again. Action of such therapeutics is geared much more at the population level rather than just concerned with the infected individual. The search for novel drugs active against these stages has been helped by improvements to in vitro culture of transmission and pre-erythrocytic parasite lifecycle stages, robotic automation and high content imaging, methodologies that permit the high-throughput screening (HTS) of compound libraries for drug discovery. Here, we review recent advances in the antimalarial screening landscape, focussed on transmission blocking as a key aim for drug-treatment campaigns of the future.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Malária/prevenção & controle , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Culicidae , Resistência a Medicamentos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Estágios do Ciclo de Vida , Plasmodium malariae/efeitos dos fármacos , Plasmodium malariae/crescimento & desenvolvimento
12.
Anal Chem ; 90(20): 11972-11980, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30226760

RESUMO

Rapid and specific detection of single nucleotide polymorphisms (SNPs) related to drug resistance in infectious diseases is crucial for accurate prognostics, therapeutics and disease management at point-of-care. Here, we present a novel amplification method and provide universal guidelines for the detection of SNPs at isothermal conditions. This method, called USS-sbLAMP, consists of SNP-based loop-mediated isothermal amplification (sbLAMP) primers and unmodified self-stabilizing (USS) competitive primers that robustly delay or prevent unspecific amplification. Both sets of primers are incorporated into the same reaction mixture, but always targeting different alleles; one set specific to the wild type allele and the other to the mutant allele. The mechanism of action relies on thermodynamically favored hybridization of totally complementary primers, enabling allele-specific amplification. We successfully validate our method by detecting SNPs, C580Y and Y493H, in the Plasmodium falciparum kelch 13 gene that are responsible for resistance to artemisinin-based combination therapies currently used globally in the treatment of malaria. USS-sbLAMP primers can efficiently discriminate between SNPs with high sensitivity (limit of detection of 5 × 101 copies per reaction), efficiency, specificity and rapidness (<35 min) with the capability of quantitative measurements for point-of-care diagnosis, treatment guidance, and epidemiological reporting of drug-resistance.


Assuntos
Repetição Kelch/genética , Técnicas de Amplificação de Ácido Nucleico , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Termodinâmica , Alelos , Primers do DNA/química , Humanos
13.
Nat Commun ; 9(1): 3805, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228275

RESUMO

Spread of parasite resistance to artemisinin threatens current frontline antimalarial therapies, highlighting the need for new drugs with alternative modes of action. Since only 0.2-1% of asexual parasites differentiate into sexual, transmission-competent forms, targeting this natural bottleneck provides a tangible route to interrupt disease transmission and mitigate resistance selection. Here we present a high-throughput screen of gametogenesis against a ~70,000 compound diversity library, identifying seventeen drug-like molecules that target transmission. Hit molecules possess varied activity profiles including male-specific, dual acting male-female and dual-asexual-sexual, with one promising N-((4-hydroxychroman-4-yl)methyl)-sulphonamide scaffold found to have sub-micromolar activity in vitro and in vivo efficacy. Development of leads with modes of action focussed on the sexual stages of malaria parasite development provide a previously unexplored base from which future therapeutics can be developed, capable of preventing parasite transmission through the population.


Assuntos
Antimaláricos/análise , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala/métodos , Malária/parasitologia , Malária/transmissão , Parasitos/fisiologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Comportamento Alimentar , Feminino , Gametogênese/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Parasitos/efeitos dos fármacos , Fenótipo , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
14.
Nat Microbiol ; 2(10): 1403-1414, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28808258

RESUMO

Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Quinolinas/farmacologia , Sequência de Aminoácidos , Animais , Anopheles , Sistemas CRISPR-Cas/genética , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Combinação de Medicamentos , Resistência a Medicamentos , Endocitose/efeitos dos fármacos , Etanolaminas/farmacologia , Fluorenos/farmacologia , Edição de Genes , Células HEK293 , Heme , Hemoglobinas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Lumefantrina , Malária/transmissão , Malária Falciparum/sangue , Malária Falciparum/transmissão , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Oocistos/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Quinolinas/química
15.
J Med Chem ; 60(14): 6036-6044, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653845

RESUMO

Structural optimization of 3-hydroxy-N'-arylidenepropanehydrazonamides provided new analogs with nanomolar to subnanomolar antiplasmodial activity against asexual blood stages of Plasmodium falciparum, excellent parasite selectivity, and nanomolar activity against the earliest forms of gametocyte development. Particularly, derivatives with a 1,3-dihalo-6-trifluoromethylphenanthrene moiety showed outstanding in vivo properties and demonstrated in part curative activity in the Plasmodium berghei mouse model when administered perorally.


Assuntos
Amidas/química , Antimaláricos/química , Hidrazonas/química , Malária/tratamento farmacológico , Fenantrenos/química , Plasmodium berghei/efeitos dos fármacos , Amidas/síntese química , Amidas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/farmacologia , Células Hep G2 , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Malária/parasitologia , Camundongos , Fenantrenos/síntese química , Fenantrenos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
16.
Nat Commun ; 8: 15159, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28537265

RESUMO

K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Tetraoxanos/química , Tetraoxanos/farmacologia , Animais , Antimaláricos/química , Cães , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Eritrócitos/parasitologia , Feminino , Meia-Vida , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Plasmodium falciparum/genética , Plasmodium vivax/genética , Ratos , Ratos Sprague-Dawley , Tetraoxanos/farmacocinética , Transgenes
17.
Nat Commun ; 8: 15160, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513586

RESUMO

Plasmodium falciparum stage V gametocytes are responsible for parasite transmission, and drugs targeting this stage are needed to support malaria elimination. We here screen the Tres Cantos Antimalarial Set (TCAMS) using the previously developed P. falciparum female gametocyte activation assay (Pf FGAA), which assesses stage V female gametocyte viability and functionality using Pfs25 expression. We identify over 400 compounds with activities <2 µM, chemically classified into 57 clusters and 33 singletons. Up to 68% of the hits are chemotypes described for the first time as late-stage gametocyte-targeting molecules. In addition, the biological profile of 90 compounds representing the chemical diversity is assessed. We confirm in vitro transmission-blocking activity of four of the six selected molecules belonging to three distinct scaffold clusters. Overall, this TCAMS gametocyte screen provides 276 promising antimalarial molecules with dual asexual/sexual activity, representing starting points for target identification and candidate selection.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Germinativas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Feminino , Flagelos/metabolismo , Células Hep G2 , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Reprodutibilidade dos Testes
18.
Sci Transl Med ; 9(387)2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446690

RESUMO

As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Aminopiridinas/uso terapêutico , Antimaláricos/uso terapêutico , Sulfonas/uso terapêutico , Aminopiridinas/farmacologia , Animais , Antimaláricos/farmacologia , Feminino , Malária/tratamento farmacológico , Malária/enzimologia , Masculino , Camundongos , Camundongos SCID , Testes de Sensibilidade Parasitária , Plasmodium/efeitos dos fármacos , Plasmodium/patogenicidade , Sulfonas/farmacologia
19.
J Med Chem ; 59(21): 9672-9685, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27631715

RESUMO

The antiplasmodial activity, DMPK properties, and efficacy of a series of quinoline-4-carboxamides are described. This series was identified from a phenotypic screen against the blood stage of Plasmodium falciparum (3D7) and displayed moderate potency but with suboptimal physicochemical properties and poor microsomal stability. The screening hit (1, EC50 = 120 nM) was optimized to lead molecules with low nanomolar in vitro potency. Improvement of the pharmacokinetic profile led to several compounds showing excellent oral efficacy in the P. berghei malaria mouse model with ED90 values below 1 mg/kg when dosed orally for 4 days. The favorable potency, selectivity, DMPK properties, and efficacy coupled with a novel mechanism of action, inhibition of translation elongation factor 2 (PfEF2), led to progression of 2 (DDD107498) to preclinical development.


Assuntos
Antimaláricos/farmacologia , Descoberta de Drogas , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Modelos Animais de Doenças , Camundongos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
20.
Nat Protoc ; 11(9): 1668-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27560172

RESUMO

The prevention of parasite transmission from the human host to the mosquito has been recognized as a vital tool for malaria eradication campaigns. However, transmission-blocking antimalarial drug and/or vaccine discovery and development is currently hampered by the expense and difficulty of producing mature Plasmodium falciparum gametocytes in vitro-the parasite stage responsible for mosquito infection. Current protocols for P. falciparum gametocyte culture usually require complex parasite synchronization and addition of stimulating and/or inhibitory factors, and they may not have demonstrated the essential property of mosquito infectivity. This protocol details all the steps required for reliable P. falciparum gametocyte production and highlights common factors that influence culture success. The protocol can be completed in 15 d, and particular emphasis is placed upon operating a gametocyte culture facility on a continuous cycle. In addition, we show how functionally viable gametocytes can be used to evaluate transmission-blocking drugs both in a field setting and at high throughput (HTP) for drug discovery.


Assuntos
Técnicas de Cultura de Células/métodos , Células Germinativas/citologia , Plasmodium falciparum/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...