Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32923429

RESUMO

Production of biofuels, bioproducts, and bioenergy requires a well-characterized, stable, and reasonably uniform biomass supply and well-established supply chains for shipping biomass from farm fields to biorefineries, while achieving year-round production targets. Preserving and stabilizing biomass feedstock during storage is a necessity for cost-effective and sustainable biofuel production. Ensiling is a common storage method used to preserve and even improve forage quality; however, the impact of ensiling on biomass physical and chemical properties that influence bioconversion processes has been variable. Our objective in this work was to determine the effects of ensiling on lignocellulosic feedstock physicochemical properties and how that influences bioconversion requirements. We observed statistically significant decreases (p < 0.05) in the content of two major structural carbohydrates (glucan and xylan) of 5 and 8%, respectively, between the ensiled and non-ensiled materials. We were unable to detect differences in sugar yields from structural carbohydrates after pretreatment and enzymatic hydrolysis of the ensiled materials compared to non-ensiled controls. Based on this work, we conclude that ensiling the corn stover did not change the bioconversion requirements compared to the control samples and incurred losses of structural carbohydrates. At the light microscopy level, ensiled corn stover exhibited little structural change or relocation of cell wall components as detected by immunocytochemistry. However, more subtle structural changes were revealed by electron microscopy, as ensiled cell walls exhibit ultrastructural characteristics such as wall delimitation intermediate between non-ensiled and dilute-acid-pretreated cell walls. These findings suggest that alternative methods of conversion, such as deacetylation and mechanical refining, could take advantage of lamellar defects and may be more effective than dilute acid or hot water pretreatment for biomass conversion of ensiled materials.

2.
Biodegradation ; 22(6): 1045-59, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21360114

RESUMO

The Test Area North (TAN) site at the Idaho National Laboratory near Idaho Falls, ID, USA, sits over a trichloroethylene (TCE) contaminant plume in the Snake River Plain fractured basalt aquifer. Past observations have provided evidence that TCE at TAN is being transformed by biological natural attenuation that may be primarily due to co-metabolism in aerobic portions of the plume by methanotrophs. TCE co-metabolism by methanotrophs is the result of the broad substrate specificity of microbial methane monooxygenase which permits non-specific oxidation of TCE in addition to the primary substrate, methane. Arrays of experimental approaches have been utilized to understand the biogeochemical processes driving intrinsic TCE co-metabolism at TAN. In this study, aerobic methanotrophs were enumerated by qPCR using primers targeting conserved regions of the genes pmoA and mmoX encoding subunits of the particulate MMO (pMMO) and soluble MMO (sMMO) enzymes, respectively, as well as the gene mxa encoding the downstream enzyme methanol dehydrogenase. Identification of proteins in planktonic and biofilm samples from TAN was determined using reverse phase ultra-performance liquid chromatography (UPLC) coupled with a quadrupole-time-of-flight (QToF) mass spectrometer to separate and sequence peptides from trypsin digests of the protein extracts. Detection of MMO in unenriched water samples from TAN provides direct evidence of intrinsic methane oxidation and TCE co-metabolic potential of the indigenous microbial population. Mass spectrometry is also well suited for distinguishing which form of MMO is expressed in situ either soluble or particulate. Using this method, pMMO proteins were found to be abundant in samples collected from wells within and adjacent to the TCE plume at TAN.


Assuntos
Biodegradação Ambiental , Poluição Ambiental/prevenção & controle , Metano/metabolismo , Methylococcaceae/enzimologia , Consórcios Microbianos/fisiologia , Oxigenases/metabolismo , Proteômica , Tricloroetileno/metabolismo , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Biofilmes/crescimento & desenvolvimento , Cromatografia de Fase Reversa , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Idaho , Espectrometria de Massas , Methylococcaceae/genética , Dados de Sequência Molecular , Oxirredução , Plâncton/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Rios
3.
Environ Sci Technol ; 44(12): 4697-704, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20476753

RESUMO

For more than 10 years, electron donor has been injected into the Snake River aquifer beneath the Test Area North site of the Idaho National Laboratory for the purpose of stimulating microbial reductive dechlorination of trichloroethene (TCE) in groundwater. This has resulted in significant TCE removal from the source area of the contaminant plume and elevated dissolved CH(4) in the groundwater extending 250 m from the injection well. The delta(13)C of the CH(4) increases from -56 per thousand in the source area to -13 per thousand with distance from the injection well, whereas the delta(13)C of dissolved inorganic carbon decreases from 8 per thousand to -13 per thousand, indicating a shift from methanogenesis to methane oxidation. This change in microbial activity along the plume axis is confirmed by PhyloChip microarray analyses of 16S rRNA genes obtained from groundwater microbial communities, which indicate decreasing abundances of reductive dechlorinating microorganisms (e.g., Dehalococcoides ethenogenes) and increasing CH(4)-oxidizing microorganisms capable of aerobic co-metabolism of TCE (e.g., Methylosinus trichosporium). Incubation experiments with (13)C-labeled TCE introduced into microcosms containing basalt and groundwater from the aquifer confirm that TCE co-metabolism is possible. The results of these studies indicate that electron donor amendment designed to stimulate reductive dechlorination of TCE may also stimulate co-metabolism of TCE.


Assuntos
Elétrons , Solo/análise , Tricloroetileno/metabolismo , Abastecimento de Água/análise , Bactérias/metabolismo , Biodegradação Ambiental , Isótopos de Carbono , Ecossistema , Geografia , Idaho , Metano/metabolismo , Fatores de Tempo
4.
Environ Sci Technol ; 42(8): 3025-32, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497161

RESUMO

Addition of molasses and urea was tested as a means of stimulating microbial urea hydrolysis in the Eastern Snake River Plain Aquifer in Idaho. Ureolysis is an integral component of a novel remediation approach for divalent trace metal and radionuclide contaminants in groundwater and associated geomedia, where the contaminants are immobilized by coprecipitation in calcite. Generation of carbonate alkalinity from ureolysis promotes calcite precipitation. In calcite-saturated aquifers, this represents a potential long-term contaminant sequestration mechanism. In a single-well experiment, dilute molasses was injected three times over two weeks to promote overall microbial growth, followed by one urea injection. With molasses addition, total cell numbers in the groundwater increased 1-2 orders of magnitude. Estimated ureolysis rates in recovered groundwater samples increased from < 0.1 to > 25 nmol L(-1) hr(-1). A quantitative PCR assay for the bacterial ureC gene indicated that urease gene numbers increased up to 170 times above pre-injection levels. Following urea injection, calcite precipitates were recovered. Estimated values for an in situ first order ureolysis rate constant ranged from 0.016 to 0.057 d(-1). Although collateral impacts such as reduced permeability were observed, overall results indicated the viability of manipulating biogeochemical processes to promote contaminant sequestration.


Assuntos
Bactérias/metabolismo , Carbonato de Cálcio/química , Melaço , Ureia/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/química , Bactérias/genética , Bactérias/isolamento & purificação , Precipitação Química , Contagem de Colônia Microbiana , Genes Bacterianos/genética , Hidrólise , Urease/metabolismo , Abastecimento de Água
5.
Microbes Environ ; 23(4): 317-25, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-21558725

RESUMO

The prokaryotic communities in deep subseafloor sediment collected during Ocean Drilling Program (ODP) Leg 204 from the South Hydrate Ridge (SHR) on the Cascadia Margin were analyzed by 16S rRNA gene clone sequencing and a fluorescent quantitative PCR technique. The microbial communities came from sites with contrasting geological characteristics on the SHR: sites 1244 and 1245 (located on the flank of the ridge, hydrate-rich sediment) and site 1251 (located on the slope basin of SHR, hydrate-poor sediment). The overall copy numbers of the 16S rRNA gene, and the proportion of archaeal 16S rRNA gene in all 16S rRNA gene community in sediment were larger on the slope basin than on the flank of the SHR. Archaeal community structure around the sulfate-methane transition zone at site 1251 (4.5 mbsf) was intensively investigated using two different PCR primer sets. A relatively abundant distribution of the 16S rRNA gene sequences related to mesophilic methanogen of the genus Methanoculleus was identified at a depth of 43.2 mbsf, and suggested that the methanogens occur in relatively shallow zones of sediment. This study demonstrated that the subseafloor microbial communities shown by 16S rRNA gene clone analyses were not directly associated with subseafloor methane hydrate deposits.

6.
Proc Natl Acad Sci U S A ; 103(8): 2815-20, 2006 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-16477011

RESUMO

The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their phylogenetic diversities in deeply buried marine sediments of the Pacific Ocean Margins. During the Ocean Drilling Program Legs 201 and 204, we obtained sediment cores from the Peru and Cascadia Margins that varied with respect to the presence of dissolved methane and methane hydrate. To examine differences in prokaryotic distribution patterns in sediments with or without methane hydrates, we studied >2,800 clones possessing partial sequences (400-500 bp) of the 16S rRNA gene and 348 representative clone sequences (approximately 1 kbp) from the two geographically separated subseafloor environments. Archaea of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members of the JS1 group, Planctomycetes, and Chloroflexi. Results from cluster and principal component analyses, which include previously reported data from the West and East Pacific Margins, suggest that, for these locations in the Pacific Ocean, prokaryotic communities from methane hydrate-bearing sediment cores are distinct from those in hydrate-free cores. The recognition of which microbial groups prevail under distinctive subseafloor environments is a significant step toward determining the role these communities play in Earth's essential biogeochemical processes.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Biologia Marinha , Metano/análise , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Sequência de Bases , DNA Ribossômico/genética , Variação Genética , Dados de Sequência Molecular , Oceano Pacífico , RNA Ribossômico 16S/genética , Microbiologia da Água
7.
Appl Environ Microbiol ; 71(4): 2016-25, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15812034

RESUMO

PCR amplification, restriction fragment length polymorphism, and phylogenetic analysis of oxygenase genes were used for the characterization of in situ methane- and ammonia-oxidizing bacteria from free-living and attached communities in the Eastern Snake River Plain aquifer. The following three methane monooxygenase (MMO) PCR primer sets were used: A189-A682, which amplifies an internal region of both the pmoA gene of the MMO particulate form and the amoA gene of ammonia monooxygenase; A189-mb661, which specifically targets the pmoA gene; and mmoXA-mmoXB, which amplifies the mmoX gene of the MMO soluble form (sMMO). Whole-genome amplification (WGA) was used to amplify metagenomic DNA from each community to assess its applicability for generating unbiased metagenomic template DNA. The majority of sequences in each archive were related to oxygenases of type II-like methanotrophs of the genus Methylocystis. A small subset of type I sequences found only in free-living communities possessed oxygenase genes that grouped nearest to Methylobacter and Methylomonas spp. Sequences similar to that of the amoA gene associated with ammonia-oxidizing bacteria (AOB) most closely matched a sequence from the uncultured bacterium BS870 but showed no substantial alignment to known cultured AOB. Based on these functional gene analyses, bacteria related to the type II methanotroph Methylocystis sp. were found to dominate both free-living and attached communities. Metagenomic DNA amplified by WGA showed characteristics similar to those of unamplified samples. Overall, numerous sMMO-like gene sequences that have been previously associated with high rates of trichloroethylene cometabolism were observed in both free-living and attached communities in this basaltic aquifer.


Assuntos
Variação Genética , Methylococcaceae/classificação , Methylocystaceae/classificação , Oxigenases/genética , Rios/microbiologia , Abastecimento de Água , Amônia/metabolismo , DNA Bacteriano/análise , Idaho , Metano/metabolismo , Methylococcaceae/enzimologia , Methylococcaceae/genética , Methylocystaceae/enzimologia , Methylocystaceae/genética , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigenases/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
8.
Appl Environ Microbiol ; 69(6): 3311-6, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12788731

RESUMO

We isolated a methanogen from deep in the sediments of the Nankai Trough off the eastern coast of Japan. At the sampling site, the water was 950 m deep and the sediment core was collected at 247 m below the sediment surface. The isolated methanogen was named Nankai-1. Cells of Nankai-1 were nonmotile and highly irregular coccoids (average diameter, 0.8 to 2 micro m) and grew with hydrogen or formate as a catabolic substrate. Cells required acetate as a carbon source. Yeast extract and peptones were not required but increased the growth rate. The cells were mesophilic, growing most rapidly at 45 degrees C (no growth at /=55 degrees C). Cells grew with a maximum specific growth rate of 2.43 day(-1) at 45 degrees C. Cells grew at pH values between 5.0 and 8.7 but did not grow at pH 4.7 or 9.0. Strain Nankai-1 grew in a wide range of salinities, from 0.1 to 1.5 M Na(+). The described phenotypic characteristics of this novel isolate were consistent with the in situ environment of the Nankai Trough. This is the first report of a methanogenic isolate from methane hydrate-bearing sediments. Phylogenetic analysis of its 16S rRNA gene sequence indicated that it is most closely related to Methanoculleus marisnigri (99.1% sequence similarity), but DNA hybridization experiments indicated a DNA sequence similarity of only 49%. Strain Nankai-1 was also found to be phenotypically similar to M. marisnigri, but two major phenotypic differences were found: strain Nankai-1 does not require peptones, and it grows fastest at a much higher temperature. We propose a new species, Methanoculleus submarinus, with strain Nankai-1 as the type strain.


Assuntos
Euryarchaeota/classificação , Euryarchaeota/genética , Sedimentos Geológicos/microbiologia , Methanomicrobiaceae/classificação , Methanomicrobiaceae/genética , Água do Mar/microbiologia , Meios de Cultura , DNA Arqueal/análise , DNA Ribossômico/análise , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Metano/metabolismo , Methanomicrobiaceae/crescimento & desenvolvimento , Methanomicrobiaceae/isolamento & purificação , Microscopia Eletrônica , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Appl Environ Microbiol ; 68(8): 3759-70, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12147470

RESUMO

Microbial communities in cores obtained from methane hydrate-bearing deep marine sediments (down to more than 300 m below the seafloor) in the forearc basin of the Nankai Trough near Japan were characterized with cultivation-dependent and -independent techniques. Acridine orange direct count data indicated that cell numbers generally decreased with sediment depth. Lipid biomarker analyses indicated the presence of viable biomass at concentrations greater than previously reported for terrestrial subsurface environments at similar depths. Archaeal lipids were more abundant than bacterial lipids. Methane was produced from both acetate and hydrogen in enrichments inoculated with sediment from all depths evaluated, at both 10 and 35 degrees C. Characterization of 16S rRNA genes amplified from the sediments indicated that archaeal clones could be discretely grouped within the Euryarchaeota and Crenarchaeota domains. The bacterial clones exhibited greater overall diversity than the archaeal clones, with sequences related to the Bacteroidetes, Planctomycetes, Actinobacteria, Proteobacteria, and green nonsulfur groups. The majority of the bacterial clones were either members of a novel lineage or most closely related to uncultured clones. The results of these analyses suggest that the microbial community in this environment is distinct from those in previously characterized methane hydrate-bearing sediments.


Assuntos
Archaea/classificação , Bactérias/classificação , Ecossistema , Sedimentos Geológicos/microbiologia , Metano/metabolismo , Água do Mar/microbiologia , Anaerobiose , Archaea/genética , Bactérias/genética , DNA Arqueal/análise , DNA Bacteriano/análise , DNA Ribossômico/análise , Japão , Lipídeos/análise , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...