Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 466-478, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38406847

RESUMO

A specific, robust threshold for drought-induced tree mortality is needed to improve the prediction of forest dieback. Here, we tested the relevance of continuous measurements of stem diameter variations for identifying such a threshold, their relationship with hydraulic and cellular damage mechanisms, and the influence of growth conditions on these relationships. Poplar saplings were grown under well-watered, water-limited, or light-limited conditions and then submitted to a drought followed by rewatering. Stem diameter was continuously measured to investigate two parameters: the percentage loss of diameter (PLD) and the percentage of diameter recovery (DR) following rewatering. Water potentials, stomatal conductance, embolism, and electrolyte leakage were also measured, and light microscopy allowed investigating cell collapse induced by drought. The water release observed through loss of diameter occurred throughout the drought, regardless of growth conditions. Poplars did not recover from drought when PLD reached a threshold and this differed according to growth conditions but remained linked to cell resistance to damage and collapse. Our findings shed new light on the mechanisms of drought-induced tree mortality and indicate that PLD could be a relevant indicator of drought-induced tree mortality, regardless of the growth conditions.


Assuntos
Folhas de Planta , Populus , Secas , Xilema , Transpiração Vegetal , Água , Árvores
2.
Ann Bot ; 133(2): 321-336, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38066666

RESUMO

BACKGROUND AND AIMS: Plant vascular diseases significantly impact crop yield worldwide. Esca is a vascular disease of grapevine found globally in vineyards which causes a loss of hydraulic conductance due to the occlusion of xylem vessels by tyloses. However, the integrated response of plant radial growth and physiology in maintaining xylem integrity in grapevine expressing esca symptoms remains poorly understood. METHODS: We investigated the interplay between variation in stem diameter, xylem anatomy, plant physiological response and hydraulic traits in two widespread esca-susceptible cultivars, 'Sauvignon blanc' and 'Cabernet Sauvignon'. We used an original experimental design using naturally infected mature vines which were uprooted and transplanted into pots allowing for their study in a mini-lysimeter glasshouse phenotyping platform. KEY RESULTS: Esca significantly altered the timing and sequence of stem growth periods in both cultivars, particularly the shrinkage phase following radial expansion. Symptomatic plants had a significantly higher density of occluded vessels and lower leaf and whole-plant gas exchange. Esca-symptomatic vines showed compensation mechanisms, producing numerous small functional xylem vessels later in development suggesting a maintenance of stem vascular cambium activity. Stabilization or late recovery of whole-plant stomatal conductance coincided with new healthy shoots at the top of the plant after esca symptoms plateaued. CONCLUSIONS: Modified cropping practices, such as avoiding late-season topping, may enhance resilience in esca-symptomatic plants. These results highlight that integrating dendrometers, xylem anatomy and gas exchange provides insights into vascular pathogenesis and its effects on plant physiology.


Assuntos
Resiliência Psicológica , Doenças Vasculares , Xilema/fisiologia , Folhas de Planta/fisiologia , Aclimatação
3.
New Phytol ; 241(3): 984-999, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38098153

RESUMO

Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.


Assuntos
Mudança Climática , Ecossistema , Água/fisiologia , Solo , Produtos Agrícolas , Secas
4.
Mol Ecol ; 32(22): 5944-5958, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815414

RESUMO

Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.


Assuntos
DNA Ambiental , Microbiota , Pinus , Monitoramento Biológico , Betula , Microbiota/genética
5.
Physiol Plant ; 175(5): e14035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882305

RESUMO

The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.


Assuntos
Craterostigma , Embolia , Desidratação , Microtomografia por Raio-X , Folhas de Planta/fisiologia , Fotossíntese , Secas , Estômatos de Plantas/fisiologia , Xilema/fisiologia
6.
J Exp Bot ; 74(21): 6847-6859, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37681745

RESUMO

The regulation of water loss and the spread of xylem embolism have mostly been considered separately. The development of an integrated approach taking into account the temporal dynamics and relative contributions of these mechanisms to plant drought responses is urgently needed. Do conifer species native to mesic and xeric environments display different hydraulic strategies and temporal sequences under drought? A dry-down experiment was performed on seedlings of four conifer species differing in embolism resistance, from drought-sensitive to extremely drought-resistant species. A set of traits related to drought survival was measured, including turgor loss point, stomatal closure, minimum leaf conductance, and xylem embolism resistance. All species reached full stomatal closure before the onset of embolism, with all but the most drought-sensitive species presenting large stomatal safety margins, demonstrating that highly drought-resistant species do not keep their stomata open under drought conditions. Plant dry-down time to death was significantly influenced by the xylem embolism threshold, stomatal safety margin, and minimum leaf conductance, and was best explained by the newly introduced stomatal margin retention index (SMRIΨ50) which reflects the time required to cross the stomatal safety margin. The SMRIΨ50 may become a key tool for the characterization of interspecific drought survival variability in trees.


Assuntos
Embolia , Traqueófitas , Estômatos de Plantas/fisiologia , Secas , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia , Árvores/fisiologia , Xilema/fisiologia
7.
Tree Physiol ; 43(12): 2131-2149, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-37707940

RESUMO

The predicted increase of drought intensity in South-East Asia has raised concern about the sustainability of rubber (Hevea brasiliensis Müll. Arg.) cultivation. In order to quantify the degree of phenotypic plasticity in this important tree crop species, we analysed a set of wood and leaf traits related to the hydraulic safety and efficiency in PB260 clones from eight small-holder plantations in Jambi province, Indonesia, representing a gradient in local microclimatic and edaphic conditions. Across plots, branch embolism resistance (P50) ranged from -2.14 to -2.58 MPa. The P50 and P88 values declined, and the hydraulic safety margin increased, with an increase in the mean annual vapour pressure deficit (VPD). Among leaf traits, only the changes in specific leaf area were related to the differences in evaporative demand. These variations of hydraulic trait values were not related to soil moisture levels. We did not find a trade-off between hydraulic safety and efficiency, but vessel density (VD) emerged as a major trait associated with both safety and efficiency. The VD, and not vessel diameter, was closely related to P50 and P88 as well as to specific hydraulic conductivity, the lumen-to-sapwood area ratio and the vessel grouping index. In conclusion, our results demonstrate some degree of phenotypic plasticity in wood traits related to hydraulic safety in this tropical tree species, but this is only in response to the local changes in evaporative demand and not soil moisture. Given that VPD may increasingly limit plant growth in a warmer world, our results provide evidence of hydraulic trait changes in response to a rising evaporative demand.


Assuntos
Hevea , Madeira , Madeira/fisiologia , Borracha , Solo , Folhas de Planta/fisiologia , Árvores/fisiologia , Secas , Água/fisiologia , Xilema/fisiologia
8.
Nat Plants ; 9(7): 1044-1056, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37386149

RESUMO

The benefits of masting (volatile, quasi-synchronous seed production at lagged intervals) include satiation of seed predators, but these benefits come with a cost to mutualist pollen and seed dispersers. If the evolution of masting represents a balance between these benefits and costs, we expect mast avoidance in species that are heavily reliant on mutualist dispersers. These effects play out in the context of variable climate and site fertility among species that vary widely in nutrient demand. Meta-analyses of published data have focused on variation at the population scale, thus omitting periodicity within trees and synchronicity between trees. From raw data on 12 million tree-years worldwide, we quantified three components of masting that have not previously been analysed together: (i) volatility, defined as the frequency-weighted year-to-year variation; (ii) periodicity, representing the lag between high-seed years; and (iii) synchronicity, indicating the tree-to-tree correlation. Results show that mast avoidance (low volatility and low synchronicity) by species dependent on mutualist dispersers explains more variation than any other effect. Nutrient-demanding species have low volatility, and species that are most common on nutrient-rich and warm/wet sites exhibit short periods. The prevalence of masting in cold/dry sites coincides with climatic conditions where dependence on vertebrate dispersers is less common than in the wet tropics. Mutualist dispersers neutralize the benefits of masting for predator satiation, further balancing the effects of climate, site fertility and nutrient demands.


Assuntos
Reprodução , Árvores , Fertilidade , Sementes , Saciação
9.
Am Nat ; 202(1): 18-39, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37384769

RESUMO

AbstractPrevious theory has shown that assortative mating for plastic traits can maintain genetic divergence across environmental gradients despite high gene flow. Yet these models did not examine how assortative mating affects the evolution of plasticity. We here describe patterns of genetic variation across elevation for plasticity in a trait under assortative mating, using multiple-year observations of budburst date in a common garden of sessile oaks. Despite high gene flow, we found significant spatial genetic divergence for the intercept, but not for the slope, of reaction norms to temperature. We then used individual-based simulations, where both the slope and the intercept of the reaction norm evolve, to examine how assortative mating affects the evolution of plasticity, varying the intensity and distance of gene flow. Our model predicts the evolution of either suboptimal plasticity (reaction norms with a slope shallower than optimal) or hyperplasticity (slopes steeper than optimal) in the presence of assortative mating when optimal plasticity would evolve under random mating. Furthermore, a cogradient pattern of genetic divergence for the intercept of the reaction norm (where plastic and genetic effects are in the same direction) always evolves in simulations with assortative mating, consistent with our observations in the studied oak populations.


Assuntos
Quercus , Reprodução , Reprodução/genética , Adaptação Fisiológica , Fluxo Gênico , Deriva Genética , Nonoxinol , Plásticos , Quercus/genética
10.
Sci Rep ; 13(1): 7724, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173393

RESUMO

Maintaining wine production under global warming partly relies on optimizing the choice of plant material for a given viticultural region and developing drought-resistant cultivars. However, progress in these directions is hampered by the lack of understanding of differences in drought resistance among Vitis genotypes. We investigated patterns of xylem embolism vulnerability within and among 30 Vitis species and sub-species (varieties) from different locations and climates, and assessed the risk of drought vulnerability in 329 viticultural regions worldwide. Within a variety, vulnerability to embolism decreased during summer. Among varieties, we have found wide variations in drought resistance of the vascular system in grapevines. This is particularly the case within Vitis vinifera, with varieties distributed across four clusters of embolism vulnerability. Ugni blanc and Chardonnay featured among the most vulnerable, while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. Regions possibly at greater risk of being vulnerable to drought, such as Poitou-Charentes, France and Marlborough, New Zealand, do not necessarily have arid climates, but rather bear a significant proportion of vulnerable varieties. We demonstrate that grapevine varieties may not respond equally to warmer and drier conditions, and highlight that hydraulic traits are key to improve viticulture suitability under climate change.


Assuntos
Embolia , Vitis , Vinho , Vitis/genética , Estações do Ano , Xilema
11.
Curr Biol ; 33(6): 1117-1124.e4, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36764300

RESUMO

Large interannual variation in seed production, called masting, is very common in wind-pollinated tree populations and has profound implications for the dynamics of forest ecosystems and the epidemiology of certain human diseases.1,2,3,4,5 Comparing the reproductive characteristics of populations established in climatically contrasting environments would provide powerful insight into masting mechanisms, but the required data are extremely scarce. We built a database from an unprecedented fine-scale 8-year survey of 150 sessile oak trees (Quercus petraea) from 15 populations distributed over a broad climatic gradient, including individual recordings of annual flowering effort, fruiting rate, and fruit production. Although oak masting was previously considered to depend mainly on fruiting rate variations,6,7 we show that the female flowering effort is highly variable from year to year and explains most of the fruiting dynamics in two-thirds of the populations. What drives masting was found to differ among populations living under various climates. In soft-climate populations, the fruiting rate increases initially strongly with the flowering effort, and the intensity of masting results mainly from the flowering synchrony level between individuals. By contrast, the fruiting rate of harsh-climate populations depends mainly on spring weather, which ensures intense masting regardless of the flowering synchronization level. Our work highlights the need for jointly measuring flowering effort and fruit production to decipher the diversity of masting mechanisms among populations. Accounting for such diversity will be decisive in proposing accurate, and possibly contrasted, scenarios about future reproductive patterns of perennial plants with ongoing climate change and their numerous cascading effects.


Assuntos
Ecossistema , Quercus , Humanos , Sementes , Frutas , Reprodução , Árvores
12.
BMC Plant Biol ; 23(1): 108, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814198

RESUMO

BACKGROUND: Global warming raises serious concerns about the persistence of species and populations locally adapted to their environment, simply because of the shift it produces in their adaptive landscape. For instance, the phenological cycle of tree species may be strongly affected by higher winter temperatures and late frost in spring. Given the variety of ecosystem services they provide, the question of forest tree adaptation has received increasing attention in the scientific community and catalyzed research efforts in ecology, evolutionary biology and functional genomics to study their adaptive capacity to respond to such perturbations. RESULTS: In the present study, we used an elevation gradient in the Pyrenees Mountains to explore the gene expression network underlying dormancy regulation in natural populations of sessile oak stands sampled along an elevation cline and potentially adapted to different climatic conditions mainly driven by temperature. By performing analyses of gene expression in terminal buds we identified genes displaying significant dormancy, elevation or dormancy-by-elevation interaction effects. Our Results highlighted that low- and high-altitude populations have evolved different molecular strategies for minimizing late frost damage and maximizing the growth period, thereby increasing potentially their respective fitness in these contrasting environmental conditions. More particularly, population from high elevation overexpressed genes involved in the inhibition of cell elongation and delaying flowering time while genes involved in cell division and flowering, enabling buds to flush earlier were identified in population from low elevation. CONCLUSION: Our study made it possible to identify key dormancy-by-elevation responsive genes revealing that the stands analyzed in this study have evolved distinct molecular strategies to adapt their bud phenology in response to temperature.


Assuntos
Quercus , Quercus/genética , Ecossistema , Temperatura , Estações do Ano , Florestas , Árvores
13.
Tree Physiol ; 43(3): 441-451, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36416206

RESUMO

Xylem anatomy may change in response to environmental or biotic stresses. Vascular occlusion, an anatomical modification of mature xylem, contributes to plant resistance and susceptibility to different stresses. In woody organs, xylem occlusions have been examined as part of the senescence process, but their presence and function in leaves remain obscure. In grapevine, many stresses are associated with premature leaf senescence inducing discolorations and scorched tissue in leaves. However, we still do not know whether the leaf senescence process follows the same sequence of physiological events and whether leaf xylem anatomy is affected in similar ways. In this study, we quantified vascular occlusions in midribs from leaves with symptoms of the grapevine disease esca, magnesium deficiency and autumn senescence. We found higher amounts of vascular occlusions in leaves with esca symptoms (in 27% of xylem vessels on average), whereas the leaves with other symptoms (as well as the asymptomatic controls) had far fewer occlusions (in 3% of vessels). Therefore, we assessed the relationship between xylem occlusions and esca leaf symptoms in four different countries (California in the USA, France, Italy and Spain) and eight different cultivars. We monitored the plants over the course of the growing season, confirming that vascular occlusions do not evolve with symptom age. Finally, we investigated the hydraulic integrity of leaf xylem vessels by optical visualization of embolism propagation during dehydration. We found that the occlusions lead to hydraulic dysfunction mainly in the peripheral veins compared with the midribs in esca symptomatic leaves. These results open new perspectives on the role of vascular occlusions during the leaf senescence process, highlighting the uniqueness of esca leaf symptoms and its consequence on leaf physiology.


Assuntos
Vitis , Água , Água/fisiologia , Vitis/fisiologia , Folhas de Planta/fisiologia , Xilema/fisiologia , Madeira
14.
New Phytol ; 237(4): 1256-1269, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366950

RESUMO

Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.


Assuntos
Secas , Incêndios Florestais , Florestas , Árvores/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia
15.
J Exp Bot ; 74(3): 1004-1021, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36350081

RESUMO

The synergy between drought-responsive traits across different organs is crucial in the whole-plant mechanism influencing drought resilience. These organ interactions, however, are poorly understood, limiting our understanding of drought response strategies at the whole-plant level. Therefore, we need more integrative studies, especially on herbaceous species that represent many important food crops but remain underexplored in their drought response. We investigated inflorescence stems and rosette leaves of six Arabidopsis thaliana genotypes with contrasting drought tolerance, and combined anatomical observations with hydraulic measurements and gene expression studies to assess differences in drought response. The soc1ful double mutant was the most drought-tolerant genotype based on its synergistic combination of low stomatal conductance, largest stomatal safety margin, more stable leaf water potential during non-watering, reduced transcript levels of drought stress marker genes, and reduced loss of chlorophyll content in leaves, in combination with stems showing the highest embolism resistance, most pronounced lignification, and thickest intervessel pit membranes. In contrast, the most sensitive Cvi ecotype shows the opposite extreme of the same set of traits. The remaining four genotypes show variations in this drought syndrome. Our results reveal that anatomical, ecophysiological, and molecular adaptations across organs are intertwined, and multiple (differentially combined) strategies can be applied to acquire a certain level of drought tolerance.


Assuntos
Arabidopsis , Arabidopsis/genética , Secas , Folhas de Planta/metabolismo , Adaptação Fisiológica , Aclimatação
16.
Tree Physiol ; 43(3): 366-378, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36263989

RESUMO

Through repeated cycles of selection and recombination, tree breeding programs deliver genetically improved varieties for a range of target characteristics such as biomass production, stem form, resistance to biotic stresses, wood properties, etc. However, in the context of increased drought and heat waves, it is not yet known whether growth performance will impede drought resistance. To address this question, we compared the hydraulic properties, such as hydraulic efficiency and hydraulic safety, in four varieties over successive varieties of genetically improved maritime pines (i.e., Pinus pinaster Aït.) for growth and stem form. We measured 22 functional traits related to hydraulic efficiency, hydraulic safety, xylem anatomy and wood density. We found that improved varieties presented higher hydraulic conductivity with larger tracheid lumen size and tracheid lumen fraction, and smaller wall thickness reinforcement and tracheid density, but not at the cost of reduced embolism resistance. The reported absence of trade-off between hydraulic conductivity and embolism resistance is a strong asset to improve biomass productivity, through increased hydraulic efficiency, without impacting drought resistance, and should enable new maritime pine varieties to cope with a drier climate. Our study is one of the first to reveal the hydraulic mechanisms over successive varieties of genetic improvement for tree growth. It provides guidelines for sustainable forest management through breeding for other forest tree species.


Assuntos
Pinus , Pinus/genética , Água , Melhoramento Vegetal , Xilema/anatomia & histologia , Madeira/genética , Madeira/anatomia & histologia , Árvores/anatomia & histologia , Secas
17.
New Phytol ; 237(3): 793-806, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36305207

RESUMO

Xylem hydraulic failure (HF) has been identified as a ubiquitous factor in triggering drought-induced tree mortality through the damage induced by the progressive dehydration of plant living cells. However, fundamental evidence of the mechanistic link connecting xylem HF to cell death has not been identified yet. The main aim of this study was to evaluate, at the leaf level, the relationship between loss of hydraulic function due to cavitation and cell death under drought conditions and discern how this relationship varied across species with contrasting resistances to cavitation. Drought was induced by withholding water from potted seedlings, and their leaves were sampled to measure their relative water content (RWC) and cell mortality. Vulnerability curves to cavitation at the leaf level were constructed for each species. An increment in cavitation events occurrence precedes the onset of cell mortality. A variation in cells tolerance to dehydration was observed along with the resistance to cavitation. Overall, our results indicate that the onset of cellular mortality occurs at lower RWC than the one for cavitation indicating the role of cavitation in triggering cellular death. They also evidenced a critical RWC for cellular death varying across species with different cavitation resistance.


Assuntos
Desidratação , Água , Desidratação/metabolismo , Água/metabolismo , Folhas de Planta/fisiologia , Xilema/fisiologia , Secas , Árvores/fisiologia , Morte Celular
18.
New Phytol ; 236(6): 2019-2036, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36039697

RESUMO

Hydraulic failure resulting from drought-induced embolism in the xylem of plants is a key determinant of reduced productivity and mortality. Methods to assess this vulnerability are difficult to achieve at scale, leading to alternative metrics and correlations with more easily measured traits. These efforts have led to the longstanding and pervasive assumed mechanistic link between vessel diameter and vulnerability in angiosperms. However, there are at least two problems with this assumption that requires critical re-evaluation: (1) our current understanding of drought-induced embolism does not provide a mechanistic explanation why increased vessel width should lead to greater vulnerability, and (2) the most recent advancements in nanoscale embolism processes suggest that vessel diameter is not a direct driver. Here, we review data from physiological and comparative wood anatomy studies, highlighting the potential anatomical and physicochemical drivers of embolism formation and spread. We then put forward key knowledge gaps, emphasising what is known, unknown and speculation. A meaningful evaluation of the diameter-vulnerability link will require a better mechanistic understanding of the biophysical processes at the nanoscale level that determine embolism formation and spread, which will in turn lead to more accurate predictions of how water transport in plants is affected by drought.


Assuntos
Embolia , Magnoliopsida , Secas , Água/fisiologia , Xilema/fisiologia
19.
Plant Physiol ; 190(3): 1673-1686, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35946780

RESUMO

Climate change is challenging the resilience of grapevine (Vitis), one of the most important crops worldwide. Adapting viticulture to a hotter and drier future will require a multifaceted approach including the breeding of more drought-tolerant genotypes. In this study, we focused on plant hydraulics as a multi-trait system that allows the plant to maintain hydraulic integrity and gas exchange rates longer under drought. We quantified a broad range of drought-related traits within and across Vitis species, created in silico libraries of trait combinations, and then identified drought tolerant trait syndromes. By modeling the maintenance of hydraulic integrity of current cultivars and the drought tolerant trait syndromes, we identified elite ideotypes that increased the amount of time they could experience drought without leaf hydraulic failure. Generally, elites exhibited a trait syndrome with lower stomatal conductance, earlier stomatal closure, and a larger hydraulic safety margin. We demonstrated that, when compared with current cultivars, elite ideotypes have the potential to decrease the risk of hydraulic failure across wine regions under future climate scenarios. This study reveals the syndrome of traits that can be leveraged to protect grapevine from experiencing hydraulic failure under drought and increase drought tolerance.


Assuntos
Vitis , Água , Síndrome , Melhoramento Vegetal , Secas , Folhas de Planta/genética , Vitis/genética
20.
Plant Cell Environ ; 45(9): 2554-2572, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35735161

RESUMO

Plant function arises from a complex network of structural and physiological traits. Explicit representation of these traits, as well as their connections with other biophysical processes, is required to advance our understanding of plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) to evaluate physiological trait networks in maize. Net primary productivity (NPP) and grain yield were simulated across five contrasting climate scenarios. Simulations achieving high NPP and grain yield in high precipitation environments featured trait networks conferring high water use strategies: deep roots, high stomatal conductance at low water potential ("risky" stomatal regulation), high xylem hydraulic conductivity and high maximal leaf area index. In contrast, high NPP and grain yield was achieved in dry environments with low late-season precipitation via water conserving trait networks: deep roots, high embolism resistance and low stomatal conductance at low leaf water potential ("conservative" stomatal regulation). We suggest that our approach, which allows for the simultaneous evaluation of physiological traits, soil characteristics and their interactions (i.e., networks), has potential to improve our understanding of crop performance in different environments. In contrast, evaluating single traits in isolation of other coordinated traits does not appear to be an effective strategy for predicting plant performance.


Assuntos
Estômatos de Plantas , Água , Secas , Ecossistema , Grão Comestível , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Solo/química , Água/fisiologia , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...