Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 65(2): 301-318, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190549

RESUMO

Pectin methylesterases (PMEs) modify homogalacturonan's chemistry and play a key role in regulating primary cell wall mechanical properties. Here, we report on Arabidopsis AtPME2, which we found to be highly expressed during lateral root emergence and dark-grown hypocotyl elongation. We showed that dark-grown hypocotyl elongation was reduced in knock-out mutant lines as compared to the control. The latter was related to the decreased total PME activity as well as increased stiffness of the cell wall in the apical part of the hypocotyl. To relate phenotypic analyses to the biochemical specificity of the enzyme, we produced the mature active enzyme using heterologous expression in Pichia pastoris and characterized it through the use of a generic plant PME antiserum. AtPME2 is more active at neutral compared to acidic pH, on pectins with a degree of 55-70% methylesterification. We further showed that the mode of action of AtPME2 can vary according to pH, from high processivity (at pH8) to low processivity (at pH5), and relate these observations to the differences in electrostatic potential of the protein. Our study brings insights into how the pH-dependent regulation by PME activity could affect the pectin structure and associated cell wall mechanical properties.


Assuntos
Arabidopsis , Hidrolases de Éster Carboxílico , Hipocótilo , Hipocótilo/genética , Hipocótilo/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Mutação/genética , Pectinas/metabolismo , Concentração de Íons de Hidrogênio
2.
Plants (Basel) ; 12(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653880

RESUMO

Fusarium oxysporum is the one of the most common and impactful pathogens of flax. Cultivars of flax that show resistance to this pathogen have previously been identified. To better understand the mechanisms that are responsible for this resistance, we conducted time-lapse analysis of one susceptible and one resistant cultivar over a two-week period following infection. We also monitored changes in some metabolites. The susceptible cultivar showed a strong onset of symptoms from 6 to 8 days after inoculation, which at this time point, was associated with changes in metabolites in both cultivars. The resistant cultivar maintained its height and normal photosynthetic capacity but showed a reduced growth of its secondary stems. This resistance was correlated with the containment of the pathogen at the root level, and an increase in some metabolites related to the phenylpropanoid pathway.

3.
Cells ; 10(10)2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34685657

RESUMO

Flax (Linum usitatissimum L.) seed oil, which accumulates in the embryo, and mucilage, which is synthesized in the seed coat, are of great economic importance for food, pharmaceutical as well as chemical industries. Theories on the link between oil and mucilage production in seeds consist in the spatio-temporal competition of both compounds for photosynthates during the very early stages of seed development. In this study, we demonstrate a positive relationship between seed oil production and seed coat mucilage extrusion in the agronomic model, flax. Three recombinant inbred lines were selected for low, medium and high mucilage and seed oil contents. Metabolite and transcript profiling (1H NMR and DNA oligo-microarrays) was performed on the seeds during seed development. These analyses showed main changes in the seed coat transcriptome during the mid-phase of seed development (25 Days Post-Anthesis), once the mucilage biosynthesis and modification processes are thought to be finished. These transcriptome changes comprised genes that are putatively involved in mucilage chemical modification and oil synthesis, as well as gibberellic acid (GA) metabolism. The results of this integrative biology approach suggest that transcriptional regulations of seed oil and fatty acid (FA) metabolism could occur in the seed coat during the mid-stage of seed development, once the seed coat carbon supplies have been used for mucilage biosynthesis and mechanochemical properties of the mucilage secretory cells.


Assuntos
Linho/crescimento & desenvolvimento , Linho/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mucilagem Vegetal/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcrição Gênica , Parede Celular/metabolismo , Endosperma/metabolismo , Ácidos Graxos/metabolismo , Linho/ultraestrutura , Giberelinas/metabolismo , Glucose/metabolismo , Endogamia , Cinética , Metabolômica , Fenótipo , Mucilagem Vegetal/ultraestrutura , Óleos de Plantas/metabolismo , Análise de Componente Principal , Recombinação Genética/genética , Sementes/ultraestrutura , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/genética
4.
Metabolites ; 10(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466546

RESUMO

Flax for oil seed is a crop of increasing popularity, but its cultivation needs technical improvement. Important agronomic traits such as productivity and resistance to stresses are to be regarded as the result of the combined responses of individual organs and their inter-communication. Ultimately, these responses directly reflect the metabolic profile at the cellular level. Above ground, the complexity of the plant phenotype is governed by leaves at different developmental stages, and their ability to synthesise and exchange metabolites. In this study, the metabolic profile of differently-developed leaves was used firstly to discriminate flax leaf developmental stages, and secondly to analyse the allocation of the metabolites within and between leaves. For this purpose, the concentration of 52 metabolites, both primary and specialized, was followed by gas chromatography (GC-) and liquid chromatography coupled to mass spectrometry (LC-MS) in alternate pairs of flax leaves. On the basis of their metabolic content, three populations of leaves in different growth stages could be distinguished. Primary and specialized metabolites showed characteristic distribution patterns, and compounds similarly evolving with leaf age could be grouped by the aid of the Kohonen self-organising map (SOM) algorithm. Ultimately, visualisation of the correlations between metabolites via hierarchical cluster analysis (HCA) allowed the assessment of the metabolic fluxes characterising different leaf developmental stages, and the investigation of the relationships between primary and specialized metabolites.

5.
Front Plant Sci ; 10: 684, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293601

RESUMO

The external seed coat cell layer of certain species is specialized in the production and extrusion of a polysaccharide matrix called mucilage. Variations in the content of the released mucilage have been mainly associated with genetically regulated physiological modifications. Understanding the mucilage extrusion process in crop species is of importance to gain deeper insight into the complex cell wall biosynthesis and dynamics. In this study, we took advantage of the varying polysaccharide composition and the size of the flax mucilage secretory cells (MSCs) to study mucilage composition and extrusion in this species of agricultural interest. We demonstrate herein that flax MSCs are structured in four superimposed layers and that rhamnogalacturonans I (RG I) are firstly synthesized, in the upper face, preceding arabinoxylan and glucan synthesis in MSC lower layers. Our results also reveal that the flax mucilage release originates from inside MSC, between the upper and deeper layers, the latter collaborating to trigger polysaccharide expansion, radial cell wall breaking and mucilage extrusion in a peeling fashion. Here, we provide evidence that the layer organization and polysaccharide composition of the MSCs regulate the mucilage release efficiency like a peeling mechanism. Finally, we propose that flax MSCs may represent an excellent model for further investigations of mucilage biosynthesis and its release.

6.
Plant Methods ; 14: 112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30568724

RESUMO

BACKGROUND: The mucilage is a model to study the polysaccharide biosynthesis since it is produced in large amounts and composed of complex polymers. In addition, it is of great economic interest for its technical and nutritional value. A fast method for phenotyping the released mucilage and the seed morphometric parameters will be useful for fundamental, food, pharmaceutical and breeding researches. Current strategies to phenotype soluble mucilage are restricted to visual evaluations or are highly time-consuming. RESULTS: Here, we developed a high-throughput phenotyping method for the simultaneous measurement of the soluble mucilage content released on a gel and the seed morphometric parameters. Within this context, we combined a biochemical assay and an open-source computer-aided image analysis tool, MuSeeQ. The biochemical assay consists in sowing seeds on an agarose medium containing the dye toluidine blue O, which specifically stains the mucilage once it is released on the gel. The second part of MuSeeQ is a macro developed in ImageJ allowing to quickly extract and analyse 11 morphometric data of seeds and their respective released mucilages. As an example, MuSeeQ was applied on a flax recombinant inbred lines population (previously screened for fatty acids content.) and revealed significant correlations between the soluble mucilage shape and the concentration of some fatty acids, e.g. C16:0 and C18:2. Other fatty acids were also found to correlate with the seed shape parameters, e.g. C18:0 and C18:2. MuSeeQ was then showed to be used for the analysis of other myxospermous species, including Arabidopsis thaliana and Camelina sativa. CONCLUSIONS: MuSeeQ is a low-cost and user-friendly method which may be used by breeders and researchers for phenotyping simultaneously seeds of specific cultivars, natural variants or mutants and their respective soluble mucilage area released on a gel. The script of MuSeeQ and video tutorials are freely available at http://MuSeeQ.free.fr.

7.
Food Chem ; 217: 1-8, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27664601

RESUMO

The main flax lignan, secoisolariciresinol diglucoside, is stored in a macromolecule containing other ester-bound phenolic compounds. In this study, NMR and HPLC-UV analyses were performed on flaxseeds harvested at different developmental stages to identify and quantify the main phenolic compounds produced during seed development. Extraction was carried out with or without alkaline hydrolysis to determine if these molecules accumulate in the lignan macromolecule and/or in a free form. Monolignol glucosides accumulate in a free form up to 9.85mg/g dry matter at the early developmental stages. Hydroxycinnamic acid glucosides and flavonoid accumulate (up to 3.18 and 4.07mg/g dry matter, respectively) in the later developmental stages and are ester-bound in the lignan macromolecule. Secosiolariciresinol diglucoside accumulates (up to 28.65mg/g dry matter) in the later developmental stages in both forms, mainly ester-bound in the lignan macromolecule and slightly in a free form.


Assuntos
Butileno Glicóis/metabolismo , Linho/crescimento & desenvolvimento , Glucosídeos/metabolismo , Lignanas/metabolismo , Substâncias Macromoleculares/metabolismo , Fenóis/análise , Sementes/crescimento & desenvolvimento , Butileno Glicóis/química , Flavonoides/análise , Flavonoides/metabolismo , Linho/química , Linho/metabolismo , Glucosídeos/química , Hidrólise , Cinética , Lignanas/química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética , Fenóis/metabolismo , Sementes/química , Sementes/metabolismo
8.
J Plant Physiol ; 171(15): 1372-7, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25046758

RESUMO

RNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat. If flax lignans biological properties and health benefits are well documented their roles in planta remain unclear. This loss of function strategy was developed to better understand the implication of the PLR1 enzyme in the lignan biosynthetic pathway and to provide new insights on the functions of these compounds. RNAi plants generated exhibited LuPLR1 gene silencing as demonstrated by quantitative RT-PCR experiments and the failed to accumulate SDG. The accumulation of pinoresinol the substrate of the PLR1 enzyme under its diglucosylated form (PDG) was increased in transgenic seeds but did not compensate the overall loss of SDG. The monolignol flux was also deviated through the synthesis of 8-5' linked neolignans dehydrodiconiferyl alcohol glucoside (DCG) and dihydro-dehydrodiconiferyl alcohol glucoside (DDCG) which were observed for the first time in flax seeds.


Assuntos
Linho/enzimologia , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Butileno Glicóis/química , Butileno Glicóis/metabolismo , Linho/química , Linho/genética , Furanos/química , Furanos/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glucosídeos/química , Glucosídeos/metabolismo , Lignanas/biossíntese , Lignanas/química , Lignanas/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/química , Sementes/enzimologia , Sementes/genética
9.
BMC Plant Biol ; 13: 159, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128060

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. RESULTS: A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. CONCLUSIONS: We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.


Assuntos
Linho/genética , Genoma de Planta/genética , Mutagênese/genética , Mutação/genética , Genética Reversa/métodos , Pareamento de Bases/genética , Metanossulfonato de Etila , Flores/genética , Genes de Plantas/genética , Genótipo , Lignina/genética , Taxa de Mutação , Motivos de Nucleotídeos/genética , Fenótipo , Filogenia , Sementes/genética
10.
Plant Cell ; 24(6): 2515-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22730403

RESUMO

Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Ligases/genética , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Hipocótilo/genética , Hipocótilo/metabolismo , Ligases/metabolismo , Mutação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...