Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684299

RESUMO

Legionellosis, an often-lethal pneumonia, is generally associated with contamination by Legionella pneumophila. This bacterium can persist in the environment and resist chemical treatment when it is internalized by amoebae. In addition, there is increasing medical proof that other Legionella species can be causative agents of Legionellosis. The objective of this study was to evaluate whether Legionella non-pneumophila (Lnp) strains were able to use the machinery of amoeba to multiply, or whether amoebae were able to limit their proliferation. Seven strains belonging to the species L. longbeachae, L. anisa, L. bozemanae, L. taurinensis, and L. dumoffii were cocultured with three amoebae, Acanthamoeba castellanii, Willaertia magna T5(S)44, and Willaertia magna C2c Maky, at two temperatures, 22 and 37 °C. We found that at 22 °C, all amoebae were able to phagocytose the seven Lnp strains and to avoid intracellular development, except for L. longbeachae, which was able to multiply inside W. magna T5(S)44. At 37 °C, four Lnp strains were able to hijack the machinery of one or two amoebae and to use it to proliferate, but none were able to multiply inside W. magna C2c Maky.

2.
Microorganisms ; 8(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207645

RESUMO

Willaertia magna C2c Maky is a free-living amoeba that has demonstrated its ability to inhibit the intracellular multiplication of some Legionella pneumophila strains, which are pathogenic bacteria inhabiting the aquatic environment. The Amoeba, an industry involved in the treatment of microbiological risk in the water and plant protection sectors, has developed a natural biocide based on the property of W. magna to manage the proliferation of the pathogen in cooling towers. In axenic liquid medium, amoebas are usually cultivated in adhesion on culture flask. However, we implemented a liquid culture in suspension using bioreactors in order to produce large quantities of W. magna. In order to investigate the culture condition effects on W. magna, we conducted a study based on microscopic, proteomics and lipidomics analyzes. According to the culture condition, amoeba exhibited two different phenotypes. The differential proteomics study showed that amoebas seemed to promote the lipid metabolism pathway in suspension culture, whereas we observed an upregulation of the carbohydrate pathway in adherent culture. Furthermore, we observed an over-regulation of proteins related to the cytoskeleton for W. magna cells grown in adhesion. Regarding the lipid analysis, suspension and adhesion cell growth showed comparable lipid class compositions. However, the differential lipid analysis revealed differences that confirmed cell phenotype differences observed by microscopy and predicted by proteomics. Overall, this study provides us with a better insight into the biology and molecular processes of W. magna in different culture lifestyles.

3.
Plants (Basel) ; 9(8)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796580

RESUMO

Downy mildew of grapevine is one of the most destructive grapevine diseases worldwide. Nowadays, downy mildew control relies almost exclusively on the use of chemical pesticides, including copper products, which are efficient but controversial due to their environmental toxicity. Natural plant protection products have become important solutions in the quest for the sustainable production of food and pest management. However, most biocontrol agents currently on the market, such as biofungicides or elicitors, have a limited efficacy; thus, they cannot replace chemical compounds in full. Our innovation is a natural active substance, which is a lysate of the amoeba Willaertia magna C2c Maky. This active substance is not only able to elicit grapevine defenses, but it also demonstrates direct fungicidal activity against Plasmopara viticola. The efficacy of this new natural substance was demonstrated both in a greenhouse and in a field. The amoeba lysate provided up to 77% protection to grapevine bunches in the field in a natural and safe way.

4.
Pathogens ; 9(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517040

RESUMO

Legionella pneumophila is a human pathogen responsible for a severe form of pneumonia named Legionnaire disease. Its natural habitat is aquatic environments, being in a free state or intracellular parasites of free-living amoebae, such as Acanthamoeba castellanii. This pathogen is able to replicate within some amoebae. Willaertia magna C2c Maky, a non-pathogenic amoeba, was previously demonstrated to resist to L. pneumophila and even to be able to eliminate the L. pneumophila strains Philadelphia, Lens, and Paris. Here, we studied the induction of seven virulence genes of three L. pneumophila strains (Paris, Philadelphia, and Lens) within W. magna C2c Maky in comparison within A. castellanii and with the gene expression level of L. pneumophila strains alone used as controls. We defined a gene expression-based virulence index to compare easily and without bias the transcript levels in different conditions and demonstrated that W. magna C2c Maky did not increase the virulence of L. pneumophila strains in contrast to A. castellanii. These results confirmed the non-permissiveness of W. magna C2c Maky toward L. pneumophila strains.

5.
Microorganisms ; 8(5)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455615

RESUMO

Willaertia magna C2c maky is a thermophilic free-living amoeba strain that showed ability to eliminate Legionella pneumophila, a pathogenic bacterium living in the aquatic environment. The amoeba industry has proposed the use of Willaertia magna as a natural biocide to control L. pneumophila proliferation in cooling towers. Here, transcriptomic and proteomic studies were carried out in order to expand knowledge on W. magna produced in a bioreactor. Illumina RNA-seq generated 217 million raw reads. A total of 8,790 transcripts were identified, of which 6,179 and 5,341 were assigned a function through comparisons with National Center of Biotechnology Information (NCBI) reference sequence and the Clusters of Orthologous Groups of proteins (COG) databases, respectively. To corroborate these transcriptomic data, we analyzed the W. magna proteome using LC-MS/MS. A total of 3,561 proteins were identified. The results of transcriptome and proteome analyses were highly congruent. Metabolism study showed that W. magna preferentially consumed carbohydrates and fatty acids to grow. Finally, an in-depth analysis has shown that W. magna produces several enzymes that are probably involved in the metabolism of secondary metabolites. Overall, our multi-omic study of W. magna opens the way to a better understanding of the genetics and biology of this amoeba.

6.
Pathogens ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041369

RESUMO

Legionella pneumophila is a facultative intracellular pathogen found in aquatic environments as planktonic cells within biofilms and as intracellular parasites of free-living amoebae such as Acanthamoeba castellanii. This pathogen bypasses the elimination mechanism to replicate within amoebae; however, not all amoeba species support the growth of L. pneumophila. Willaertia magna C2c Maky, a non-pathogenic amoeba, was previously demonstrated to possess the ability to eliminate the L. pneumophila strain Paris. Here, we study the intracellular behaviour of three L. pneumophila strains (Paris, Philadelphia, and Lens) within W. magna C2c Maky and compare this strain to A. castellanii and W. magna Z503, which are used as controls. We observe the intracellular growth of strain Lens within W. magna Z503 and A. castellanii at 22 °C and 37 °C. Strain Paris grows within A. castellanii at any temperature, while it only grows at 22 °C within W. magna Z503. Strain Philadelphia proliferates only within A. castellanii at 37 °C. Within W. magna C2c Maky, none of the three legionella strains exhibit intracellular growth. Additionally, the ability of W. magna C2c Maky to decrease the number of internalized L. pneumophila is confirmed. These results support the idea that W. magna C2c Maky possesses unique behaviour in regard to L. pneumophila strains.

7.
Plant Biotechnol J ; 16(1): 208-220, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28544449

RESUMO

For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus-resistant transgenic plants based on the pathogen-derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root-associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.


Assuntos
Metagenômica/métodos , Plantas Geneticamente Modificadas/genética , Vitis/genética , Plantas Geneticamente Modificadas/microbiologia , Plantas Geneticamente Modificadas/virologia , Vitis/microbiologia , Vitis/virologia
8.
Genome Biol Evol ; 9(9): 2477-2490, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961970

RESUMO

Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/metabolismo , Evolução Molecular , Herbicidas/metabolismo , Sequências Repetitivas Dispersas , Família Multigênica , Sphingomonadaceae/genética , Proteínas de Bactérias/genética , Biodegradação Ambiental , Genes Bacterianos , Oxigenases/genética
9.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459967

RESUMO

To diversify their genetic material, and thereby allow adaptation to environmental disturbances and colonization of new ecological niches, bacteria use various evolutionary processes, including the acquisition of new genetic material by horizontal transfer mechanisms such as conjugation, transduction and transformation. Electrotransformation mediated by lightning-related electrical phenomena may constitute an additional gene-transfer mechanism occurring in nature. The presence in clouds of bacteria such as Pseudomonas syringae capable of forming ice nuclei that lead to precipitation, and that are likely to be involved in triggering lightning, led us to postulate that natural electrotransformation in clouds may contribute to the adaptive potential of these bacteria. Here, we quantify the survival rate of 10 P. syringae strains in liquid and icy media under such electrical pulses and their capacity to acquire exogenous DNA. In comparison to two other bacteria (Pseudomonas sp. N3 and Escherichia coli TOP10), P. syringae CC0094 appears to be best adapted for survival and for genetic electrotransformation under these conditions, which suggests that this bacterium would be able to survive and to get a boost in its adaptive potential while being transported in clouds and falling back to Earth with precipitation from storms.


Assuntos
Adaptação Fisiológica/genética , Transferência Genética Horizontal/genética , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Evolução Biológica , DNA Bacteriano/metabolismo , Estimulação Elétrica , Eletroporação/métodos , Escherichia coli/genética , Gelo , Raio , Pseudomonas syringae/crescimento & desenvolvimento , Tempo (Meteorologia)
10.
Forensic Sci Int ; 270: 153-158, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984802

RESUMO

Soil complexity, heterogeneity and transferability make it valuable in forensic investigations to help obtain clues as to the origin of an unknown sample, or to compare samples from a suspect or object with samples collected at a crime scene. In a few countries, soil analysis is used in matters from site verification to estimates of time after death. However, up to date the application or use of soil information in criminal investigations has been limited. In particular, comparing bacterial communities in soil samples could be a useful tool for forensic science. To evaluate the relevance of this approach, a blind test was performed to determine the origin of two questioned samples (one from the mock crime scene and the other from a 50:50 mixture of the crime scene and the alibi site) compared to three control samples (soil samples from the crime scene, from a context site 25m away from the crime scene and from the alibi site which was the suspect's home). Two biological methods were used, Ribosomal Intergenic Spacer Analysis (RISA), and 16S rRNA gene sequencing with Illumina Miseq, to evaluate the discriminating power of soil bacterial communities. Both techniques discriminated well between soils from a single source, but a combination of both techniques was necessary to show that the origin was a mixture of soils. This study illustrates the potential of applying microbial ecology methodologies in soil as an evaluative forensic tool.


Assuntos
DNA Espaçador Ribossômico , Microbiota/genética , RNA Ribossômico 16S , Microbiologia do Solo , Ciências Forenses , Sequenciamento de Nucleotídeos em Larga Escala
11.
Forensic Sci Int Genet ; 26: 21-29, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27750077

RESUMO

The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool.


Assuntos
Microbiota , Microbiologia do Solo , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Genética Forense , Genes Bacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Análise em Microsséries , Filogenia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética
12.
Methods Mol Biol ; 1399: 257-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791508

RESUMO

Activity-based metagenomics is one of the most efficient approaches to boost the discovery of novel biocatalysts from the huge reservoir of uncultivated bacteria. In this chapter, we describe a highly generic procedure of metagenomic library construction and high-throughput screening for carbohydrate-active enzymes. Applicable to any bacterial ecosystem, it enables the swift identification of functional enzymes that are highly efficient, alone or acting in synergy, to break down polysaccharides and oligosaccharides.


Assuntos
Bactérias/enzimologia , Enzimas/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Metagenômica/métodos , Bactérias/genética , Carboidratos/genética , Ativadores de Enzimas/metabolismo , Enzimas/genética , Enzimas/metabolismo , Plasmídeos
13.
Biotechniques ; 59(6): 347, 349-52, 354-6 passim, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26651514

RESUMO

Ribosomal Intergenic Spacer Analysis (RISA) is a high-resolution and highly reproducible fingerprinting technique for discriminating between microbial communities. The community profiles can be visualized using the Agilent 2100 Bioanalyzer. Comparison between fingerprints relies upon precise estimation of all amplified DNA fragment lengths; however, size standard computation can vary between gel runs. For complex samples such as soil microbial communities, discrimination by fragment size is not always sufficient. In such cases, the comparison of whole fluorescence data as a function of time (electrophoregrams) is more appropriate. When electrophoregrams [fluorescence = f (time)] are used, and more than one chip is involved, electrophoregram comparisons are challenging due to experimental variations between chips and the lack of correction by the Agilent software in such situations. Here we present RisaAligner software for analyzing and comparing electrophoregrams from Agilent chips using a nonlinear ladder-alignment algorithm. We demonstrate the robustness and substantial improvement of data analysis by analyzing soil microbial profiles obtained with Agilent DNA 1000 and High Sensitivity chips.


Assuntos
Impressões Digitais de DNA/métodos , DNA Intergênico/química , Software , Microbiologia do Solo , Algoritmos , Dinâmica não Linear , Análise de Componente Principal
14.
J Hazard Mater ; 279: 502-10, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25108826

RESUMO

The ethyl tert-butyl ether (ETBE) degradation capacity and phylogenetic composition of five aerobic enrichment cultures with ETBE as the sole carbon and energy source were studied. In all cases, ETBE was entirely degraded to biomass and CO2. Clone libraries of the 16S rRNA gene were prepared from each enrichment. The analyses of the DNA sequences obtained showed different taxonomic compositions with a majority of Proteobacteria in three cases. The two other enrichments have different microbiota with an abundance of Acidobacteria in one case, whereas the microbiota in the second was more diverse (majority of Actinobacteria, Chlorobi and Gemmatimonadetes). Actinobacteria were detected in all five enrichments. Several bacterial strains were isolated from the enrichments and five were capable of degrading ETBE and/or tert-butyl alcohol (TBA), a degradation intermediate. The five included three Rhodococcus sp. (IFP 2040, IFP 2041, IFP 2043), one Betaproteobacteria (IFP 2047) belonging to the Rubrivivax/Leptothrix/Ideonella branch, and one Pseudonocardia sp. (IFP 2050). Quantification of these five strains and two other strains, Rhodococcus sp. IFP 2042 and Bradyrhizobium sp. IFP2049, which had been previously isolated from one of the enrichments was carried out on the different enrichments based on quantitative PCR with specific 16S rRNA gene primers and the results were consistent with the hypothesized role of Actinobacteria and Betaproteobacteria in the degradation of ETBE and the possible role of Bradyrhizobium strains in the degradation of TBA.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Poluição Ambiental , Etil-Éteres/metabolismo , Bactérias/química , Biomassa , Etil-Éteres/química , Cinética , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
15.
J Biotechnol ; 190: 18-29, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24721211

RESUMO

A mix of oligonucleotide probes was used to hybridize soil metagenomic DNA from a fosmid clone library spotted on high density membranes. The pooled radio-labeled probes were designed to target genes encoding glycoside hydrolases GH18, dehalogenases, bacterial laccases and mobile genetic elements (integrases from integrons and insertion sequences). Positive hybridizing spots were affiliated to the corresponding clones in the library and the metagenomic inserts were sequenced. After assembly and annotation, new coding DNA sequences related to genes of interest were identified with low protein similarity against the closest hits in databases. This work highlights the sensitivity of DNA/DNA hybridization techniques as an effective and complementary way to recover novel genes from large metagenomic clone libraries. This study also supports that some of the identified catabolic genes might be associated with horizontal transfer events.


Assuntos
Bactérias/genética , Genes Bacterianos , Metagenômica/métodos , Microbiologia do Solo , Bactérias/enzimologia , Proteínas de Bactérias/genética , Sequência de Bases , Quitina/metabolismo , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Gênica , Integrases/genética , Lacase/genética , Hibridização de Ácido Nucleico/genética
16.
Appl Microbiol Biotechnol ; 97(24): 10531-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23474617

RESUMO

Ethyl tert-butyl ether (ETBE) enrichment was obtained by adding contaminated groundwater to a mineral medium containing ETBE as the sole carbon and energy source. ETBE was completely degraded to biomass and CO2 with a transient production of tert-butanol (TBA) and a final biomass yield of 0.37 ± 0.08 mg biomass (dry weight).mg(-1) ETBE. Two bacterial strains, IFP 2042 and IFP 2049, were isolated from the enrichment, and their 16S rRNA genes (rrs) were similar to Rhodococcus sp. (99 % similarity to Rhodococcus erythropolis) and Bradyrhizobium sp. (99 % similarity to Bradyrhizobium japonicum), respectively. Rhodococcus sp. IFP 2042 degraded ETBE to TBA, and Bradyrhizobium sp. IFP 2049 degraded TBA to biomass and CO2. A mixed culture of IFP 2042 and IFP 2049 degraded ETBE to CO2 with a biomass yield similar to the original ETBE enrichment (0.31 ± 0.02 mg biomass.mg(-1) ETBE). Among the genes previously described to be involved in ETBE, MTBE, and TBA degradation, only alkB was detected in Rhodococcus sp. IFP 2042 by PCR, and none were detected in Bradyrhizobium sp. IFP 2049.


Assuntos
Bradyrhizobium/metabolismo , Etil-Éteres/metabolismo , Água Subterrânea/microbiologia , Rhodococcus/metabolismo , Poluentes da Água/metabolismo , Biomassa , Biotransformação , Bradyrhizobium/isolamento & purificação , Dióxido de Carbono/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rhodococcus/isolamento & purificação , Análise de Sequência de DNA
17.
J Microbiol Methods ; 86(2): 255-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21640142

RESUMO

Gene transfer frequency can be determined experimentally on plates, but the methods currently in use do not discriminate between independent transfers and clonal multiplication of initial transformants. In order to overcome this bias, we engineered an Acinetobacter baylyi population in which cells differed by a specific molecular signature and used it as recipient in transformation experiments. Our results suggest that a corrective factor of 0.52 should be applied in order to accurately report natural transformation when using the plate counting method.


Assuntos
Acinetobacter/genética , Técnicas de Transferência de Genes , Transferência Genética Horizontal , Genética Microbiana/métodos
18.
Curr Opin Microbiol ; 14(3): 229-35, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21601510

RESUMO

The ongoing development of metagenomic approaches is providing the means to explore antibiotic resistance in nature and address questions that could not be answered previously with conventional culture-based strategies. The number of available environmental metagenomic sequence datasets is rapidly expanding and henceforth offer the ability to gain a more comprehensive understanding of antibiotic resistance at the global scale. Although there is now evidence that the environment constitutes a vast reservoir of antibiotic resistance gene determinants (ARGDs) and that the majority of ARGDs acquired by human pathogens may have an environmental origin, a better understanding of their diversity, prevalence and ecological significance may help predict the emergence and spreading of newly acquired resistances. Recent applications of metagenomic approaches to the study of ARGDs in natural environments such as soil should help overcome challenges concerning expanding antibiotic resistances.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana , Metagenoma , Microbiologia do Solo , Antibacterianos/farmacologia , Transferência Genética Horizontal , Humanos
19.
FEMS Microbiol Ecol ; 78(1): 129-36, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21564143

RESUMO

The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.


Assuntos
Transferência Genética Horizontal/fisiologia , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Sequência de Bases , DNA de Plantas/genética , Farmacorresistência Bacteriana/genética , Genoma de Cloroplastos/fisiologia , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/microbiologia , Microbiologia do Solo , Espectinomicina/toxicidade , Nicotiana/microbiologia , Transgenes
20.
Colloids Surf B Biointerfaces ; 70(2): 226-31, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19186036

RESUMO

We studied bovine serum albumin (BSA) and alpha-chymotrypsin adsorption onto mica surfaces over a large pH range by atomic force microscopy (AFM) measurements in liquid. Data analyses (height, roughness and roughness factor) brought new insights on the conformation of proteins in soil environments, with mica as a model of soil phyllosilicates and non-hydrophobic surfaces. Validation of AFM approach was performed on BSA, whose behavior was previously described by nuclear magnetic resonance and infra-red spectroscopic methods. Maximum adsorption was observed near the isoelectric point (IEP). A stronger interaction and a lower amount of adsorbed proteins were observed below the IEP, which contrasted with the progressive decrease of adsorption above the IEP. We then studied the adsorption of alpha-chymotrypsin, a proteolytic enzyme commonly found in soils. AFM pictures demonstrated a complete coverage of the mica surface at the IEP in contrast to the BSA case. Comparison of the AFM data with other indirect methods broadened the understanding of alpha-chymotrypsin adsorption process through the direct display of the protein adsorption patterns as a function of pH.


Assuntos
Quimotripsina/química , Adesividade , Adsorção , Silicatos de Alumínio/química , Animais , Bovinos , Concentração de Íons de Hidrogênio , Camundongos , Microscopia de Força Atômica/métodos , Modelos Estatísticos , Reprodutibilidade dos Testes , Soroalbumina Bovina , Software , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...