Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 32: 5046-5059, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647187

RESUMO

In this paper, deep learning-based techniques for film grain removal and synthesis that can be applied in video coding are proposed. Film grain is inherent in analog film content because of the physical process of capturing images and video on film. It can also be present in digital content where it is purposely added to reflect the era of analog film and to evoke certain emotions in the viewer or enhance the perceived quality. In the context of video coding, the random nature of film grain makes it both difficult to preserve and very expensive to compress. To better preserve it while compressing the content efficiently, film grain is removed and modeled before video encoding and then restored after video decoding. In this paper, a film grain removal model based on an encoder-decoder architecture and a film grain synthesis model based on a conditional generative adversarial network (cGAN) are proposed. Both models are trained on a large dataset of pairs of clean (grain-free) and grainy images. Quantitative and qualitative evaluations of the developed solutions were conducted and showed that the proposed film grain removal model is effective in filtering film grain at different intensity levels using two configurations: 1) a non-blind configuration where the film grain level of the grainy input is known and provided as input; and 2) a blind configuration where the film grain level is unknown. As for the film grain synthesis task, the experimental results show that the proposed model is able to reproduce realistic film grain with a controllable intensity level specified as input.

2.
Data Brief ; 39: 107671, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34934785

RESUMO

Using a collection of publicly available links to short form video clips of an average of 6 seconds duration each, 1275 users manually annotated each video multiple times to indicate both long-term and short-term memorability of the videos. The annotations were gathered as part of an online memory game and measured a participant's ability to recall having seen the video previously when shown a collection of videos. The recognition tasks were performed on videos seen within the previous few minutes for short-term memorability and within the previous 24 to 72 hours for long-term memorability. Data includes the reaction times for each recognition of each video. Associated with each video are text descriptions (captions) as well as a collection of image-level features applied to 3 frames extracted from each video (start, middle and end). Video-level features are also provided. The dataset was used in the Video Memorability task as part of the MediaEval benchmark in 2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...