Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1455, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927839

RESUMO

Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Mutação , Ligases/metabolismo
2.
Sci Transl Med ; 12(553)2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32718991

RESUMO

Vaccine development has the potential to be accelerated by coupling tools such as systems immunology analyses and controlled human infection models to define the protective efficacy of prospective immunogens without expensive and slow phase 2b/3 vaccine studies. Among human challenge models, controlled human malaria infection trials have long been used to evaluate candidate vaccines, and RTS,S/AS01 is the most advanced malaria vaccine candidate, reproducibly demonstrating 40 to 80% protection in human challenge studies in malaria-naïve individuals. Although antibodies are critical for protection after RTS,S/AS01 vaccination, antibody concentrations are inconsistently associated with protection across studies, and the precise mechanism(s) by which vaccine-induced antibodies provide protection remains enigmatic. Using a comprehensive systems serological profiling platform, the humoral correlates of protection against malaria were identified and validated across multiple challenge studies. Rather than antibody concentration, qualitative functional humoral features robustly predicted protection from infection across vaccine regimens. Despite the functional diversity of vaccine-induced immune responses across additional RTS,S/AS01 vaccine studies, the same antibody features, antibody-mediated phagocytosis and engagement of Fc gamma receptor 3A (FCGR3A), were able to predict protection across two additional human challenge studies. Functional validation using monoclonal antibodies confirmed the protective role of Fc-mediated antibody functions in restricting parasite infection both in vitro and in vivo, suggesting that these correlates may mechanistically contribute to parasite restriction and can be used to guide the rational design of an improved vaccine against malaria.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Anticorpos Antiprotozoários , Humanos , Malária/prevenção & controle , Malária Falciparum/prevenção & controle , Plasmodium falciparum , Estudos Prospectivos , Receptores de IgG , Vacinação
4.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929905

RESUMO

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Assuntos
Ecdisterona/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Malária Falciparum/parasitologia , Animais , Anopheles/parasitologia , Culicidae , Ecdisterona/fisiologia , Feminino , Células HEK293 , Humanos , Insetos Vetores , Malária/parasitologia , Camundongos , Mosquitos Vetores , Células NIH 3T3 , Oogênese/fisiologia , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(50): 12799-12804, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420498

RESUMO

Drug resistance is an obstacle to global malaria control, as evidenced by the recent emergence and rapid spread of delayed artemisinin (ART) clearance by mutant forms of the PfKelch13 protein in Southeast Asia. Identifying genetic determinants of ART resistance in African-derived parasites is important for surveillance and for understanding the mechanism of resistance. In this study, we carried out long-term in vitro selection of two recently isolated West African parasites (from Pikine and Thiès, Senegal) with increasing concentrations of dihydroartemisinin (DHA), the biologically active form of ART, over a 4-y period. We isolated two parasite clones, one from each original isolate, that exhibited enhanced survival to DHA in the ring-stage survival assay. Whole-genome sequence analysis identified 10 mutations in seven different genes. We chose to focus on the gene encoding PfCoronin, a member of the WD40-propeller domain protein family, because mutations in this gene occurred in both independent selections, and the protein shares the ß-propeller motif with PfKelch13 protein. For functional validation, when pfcoronin mutations were introduced into the parental parasites by CRISPR/Cas9-mediated gene editing, these mutations were sufficient to reduce ART susceptibility in the parental lines. The discovery of a second gene for ART resistance may yield insights into the molecular mechanisms of resistance. It also suggests that pfcoronin mutants could emerge as a nonkelch13 type of resistance to ART in natural settings.


Assuntos
4-Butirolactona/análogos & derivados , Artemisininas/farmacologia , Proteínas dos Microfilamentos/genética , Mutação/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , 4-Butirolactona/genética , Antimaláricos/farmacologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Resistência a Medicamentos/genética , Edição de Genes/métodos , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Repetições WD40/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...