Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 8: 1774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31819800

RESUMO

RCy3 is an R package in Bioconductor that communicates with Cytoscape via its REST API, providing access to the full feature set of Cytoscape from within the R programming environment. RCy3 has been redesigned to streamline its usage and future development as part of a broader Cytoscape Automation effort. Over 100 new functions have been added, including dozens of helper functions specifically for intuitive data overlay operations. Over 40 Cytoscape apps have implemented automation support so far, making hundreds of additional operations accessible via RCy3. Two-way conversion with networks from \textit{igraph} and \textit{graph} ensures interoperability with existing network biology workflows and dozens of other Bioconductor packages. These capabilities are demonstrated in a series of use cases involving public databases, enrichment analysis pipelines, shortest path algorithms and more. With RCy3, bioinformaticians will be able to quickly deliver reproducible network biology workflows as integrations of Cytoscape functions, complex custom analyses and other R packages.

2.
Genome Biol ; 20(1): 185, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477170

RESUMO

Cytoscape is one of the most successful network biology analysis and visualization tools, but because of its interactive nature, its role in creating reproducible, scalable, and novel workflows has been limited. We describe Cytoscape Automation (CA), which marries Cytoscape to highly productive workflow systems, for example, Python/R in Jupyter/RStudio. We expose over 270 Cytoscape core functions and 34 Cytoscape apps as REST-callable functions with standardized JSON interfaces backed by Swagger documentation. Independent projects to create and publish Python/R native CA interface libraries have reached an advanced stage, and a number of automation workflows are already published.


Assuntos
Redes Reguladoras de Genes , Software , Fluxo de Trabalho , Automação , Anotação de Sequência Molecular
3.
Cell Syst ; 8(3): 267-273.e3, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30878356

RESUMO

Systems biology requires not only genome-scale data but also methods to integrate these data into interpretable models. Previously, we developed approaches that organize omics data into a structured hierarchy of cellular components and pathways, called a "data-driven ontology." Such hierarchies recapitulate known cellular subsystems and discover new ones. To broadly facilitate this type of modeling, we report the development of a software library called the Data-Driven Ontology Toolkit (DDOT), consisting of a Python package (https://github.com/idekerlab/ddot) to assemble and analyze ontologies and a web application (http://hiview.ucsd.edu) to visualize them. Using DDOT, we programmatically assemble a compendium of ontologies for 652 diseases by integrating gene-disease mappings with a gene similarity network derived from omics data. For example, the ontology for Fanconi anemia describes known and novel disease mechanisms in its hierarchy of 194 genes and 74 subsystems. DDOT provides an easy interface to share ontologies online at the Network Data Exchange.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Redes Reguladoras de Genes , Software , Ontologia Genética , Humanos
4.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30026936

RESUMO

The copycatLayout app is a network-based visual differential analysis tool that improves upon the existing layoutSaver app and is delivered pre-installed with Cytoscape, beginning with v3.6.0. LayoutSaver cloned a network layout by mapping node locations from one network to another based on node attribute values, but failed to clone view scale and location, and provided no means of identifying which nodes were successfully mapped between networks. Copycat addresses these issues and provides additional layout options. With the advent of Cytoscape Automation (packaged in Cytoscape v3.6.0), researchers can utilize the Copycat layout and its output in workflows written in their language of choice by using only a few simple REST calls. Copycat enables researchers to visually compare groups of homologous genes, generate network comparison images for publications, and quickly identify differences between similar networks at a glance without leaving their script. With a few extra REST calls, scripts can discover nodes present in one network but not in the other, which can feed into more complex analyses (e.g., modifying mismatched nodes based on new data, then re-running the layout to highlight additional network changes).


Assuntos
Modelos Teóricos , Software , Automação , Gráficos por Computador
5.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30026937

RESUMO

Adjacency matrices are useful for storing pairwise interaction data, such as correlations between gene pairs in a pathway or similarities between genes and conditions. The aMatReader app enables users to import one or multiple adjacency matrix files into Cytoscape, where each file represents an edge attribute in a network. Our goal was to import the diverse adjacency matrix formats produced by existing scripts and libraries written in R, MATLAB, and Python, and facilitate importing that data into Cytoscape. To accelerate the import process, aMatReader attempts to predict matrix import parameters by analyzing the first two lines of the file. We also exposed CyREST endpoints to allow researchers to import network matrix data directly into Cytoscape from their language of choice. Many analysis tools deal with networks in the form of an adjacency matrix, and exposing the aMatReader API to automation users enables scripts to transfer those networks directly into Cytoscape with little effort.


Assuntos
Biologia Computacional/métodos , Software , Automação , Gráficos por Computador
6.
F1000Res ; 7: 800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983926

RESUMO

Cytoscape is the premiere platform for interactive analysis, integration and visualization of network data. While Cytoscape itself delivers much basic functionality, it relies on community-written apps to deliver specialized functions and analyses. To date, Cytoscape's CyREST feature has allowed researchers to write workflows that call basic Cytoscape functions, but provides no access to its high value app-based functions. With Cytoscape Automation, workflows can now call apps that have been upgraded to expose their functionality. This article collection is a resource to assist readers in quickly and economically leveraging such apps in reproducible workflows that scale independently to large data sets and production runs.

8.
Nat Methods ; 15(4): 290-298, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29505029

RESUMO

Although artificial neural networks are powerful classifiers, their internal structures are hard to interpret. In the life sciences, extensive knowledge of cell biology provides an opportunity to design visible neural networks (VNNs) that couple the model's inner workings to those of real systems. Here we develop DCell, a VNN embedded in the hierarchical structure of 2,526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on several million genotypes, DCell simulates cellular growth nearly as accurately as laboratory observations. During simulation, genotypes induce patterns of subsystem activities, enabling in silico investigations of the molecular mechanisms underlying genotype-phenotype associations. These mechanisms can be validated, and many are unexpected; some are governed by Boolean logic. Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems (21%), reflecting the emergence of a complex phenotype. DCell provides a foundation for decoding the genetics of disease, drug resistance and synthetic life.


Assuntos
Fenômenos Fisiológicos Celulares , Aprendizado Profundo , Redes Neurais de Computação , Simulação por Computador , Regulação da Expressão Gênica , Genótipo , Humanos
9.
Cancer Res ; 77(21): e58-e61, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092941

RESUMO

We present NDEx 2.0, the latest release of the Network Data Exchange (NDEx) online data commons (www.ndexbio.org) and the ways in which it can be used to (i) improve the quality and abundance of biological networks relevant to the cancer research community; (ii) provide a medium for collaboration involving networks; and (iii) facilitate the review and dissemination of networks. We describe innovations addressing the challenges of an online data commons: scalability, data integration, data standardization, control of content and format by authors, and decentralized mechanisms for review. The practical use of NDEx is presented in the context of a novel strategy to foster network-oriented communities of interest in cancer research by adapting methods from academic publishing and social media. Cancer Res; 77(21); e58-61. ©2017 AACR.


Assuntos
Biologia Computacional , Internet , Neoplasias/genética , Humanos , Software
10.
PLoS Comput Biol ; 13(10): e1005598, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29023449

RESUMO

Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.


Assuntos
Algoritmos , Software , Biologia de Sistemas/métodos , Animais , Resistencia a Medicamentos Antineoplásicos , Indóis , Modelos Biológicos , Mutação , Mapeamento de Interação de Proteínas/métodos , Sulfonamidas , Vemurafenib
11.
Mol Cell ; 65(4): 761-774.e5, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28132844

RESUMO

We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.


Assuntos
Autofagia/genética , Redes Reguladoras de Genes , Genômica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Biologia de Sistemas/métodos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Bases de Dados Genéticas , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Humanos , Modelos Genéticos , Pichia/genética , Pichia/metabolismo , Mapas de Interação de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Integração de Sistemas
12.
Nat Methods ; 13(3): 245-247, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780094

RESUMO

Complex biomedical analyses require the use of multiple software tools in concert and remain challenging for much of the biomedical research community. We introduce GenomeSpace (http://www.genomespace.org), a cloud-based, cooperative community resource that currently supports the streamlined interaction of 20 bioinformatics tools and data resources. To facilitate integrative analysis by non-programmers, it offers a growing set of 'recipes', short workflows to guide investigators through high-utility analysis tasks.


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Humano/genética , Software , Mineração de Dados , Humanos , Internet , Integração de Sistemas
13.
F1000Res ; 5: 2543, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853520

RESUMO

dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (.dot, .gv) files, also known as DOT files due to the .dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including Graphviz, Gephi, Tulip, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes) and advanced analysis and formatting, they do not have as many styling options as the Graphviz software suite. dot-app enables the interchange of networks between Cytoscape and DOT-compatible applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

14.
F1000Res ; 4: 478, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26672762

RESUMO

As bioinformatic workflows become increasingly complex and involve multiple specialized tools, so does the difficulty of reliably reproducing those workflows. Cytoscape is a critical workflow component for executing network visualization, analysis, and publishing tasks, but it can be operated only manually via a point-and-click user interface. Consequently, Cytoscape-oriented tasks are laborious and often error prone, especially with multistep protocols involving many networks. In this paper, we present the new cyREST Cytoscape app and accompanying harmonization libraries. Together, they improve workflow reproducibility and researcher productivity by enabling popular languages (e.g., Python and R, JavaScript, and C#) and tools (e.g., IPython/Jupyter Notebook and RStudio) to directly define and query networks, and perform network analysis, layouts and renderings. We describe cyREST's API and overall construction, and present Python- and R-based examples that illustrate how Cytoscape can be integrated into large scale data analysis pipelines. cyREST is available in the Cytoscape app store (http://apps.cytoscape.org) where it has been downloaded over 1900 times since its release in late 2014.

15.
Cell Syst ; 1(4): 302-305, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26594663

RESUMO

Networks are a powerful and flexible methodology for expressing biological knowledge for computation and communication. Network-encoded information can include systematic screens for molecular interactions, biological relationships curated from literature, and outputs from analysis of Big Data. NDEx, the Network Data Exchange (www.ndexbio.org), is an online commons where scientists can upload, share, and publicly distribute networks. Networks in NDEx receive globally unique accession IDs and can be stored for private use, shared in pre-publication collaboration, or released for public access. Standard and novel data formats are accommodated in a flexible storage model. Organizations can use NDEx as a distribution channel for networks they generate or curate. Developers of bioinformatic applications can store and query NDEx networks via a common programmatic interface. NDEx helps expand the role of networks in scientific discourse and facilitates the integration of networks as data in publications. It is a step towards an ecosystem in which networks bearing data, hypotheses, and findings flow easily between scientists.

16.
Bioinformatics ; 31(23): 3868-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26272981

RESUMO

UNLABELLED: We developed cyNeo4j, a Cytoscape App to link Cytoscape and Neo4j databases to utilize the performance and storage capacities Neo4j offers. We implemented a Neo4j NetworkAnalyzer, ForceAtlas2 layout and Cypher component to demonstrate the possibilities a distributed setup of Cytoscape and Neo4j have. AVAILABILITY AND IMPLEMENTATION: The app is available from the Cytoscape App Store at http://apps.cytoscape.org/apps/cyneo4j, the Neo4j plugins at www.github.com/gsummer/cyneo4j-parent and the community and commercial editions of Neo4j can be found at http://www.neo4j.com. CONTACT: georg.summer@gmail.com.


Assuntos
Bases de Dados Factuais , Software , Algoritmos
17.
Med Sci Sports Exerc ; 47(3): 662-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25010407

RESUMO

PURPOSE: The objective of this study is to assess validity of the personal activity location measurement system (PALMS) for deriving time spent walking/running, bicycling, and in vehicle, using SenseCam (Microsoft, Redmond, WA) as the comparison. METHODS: Forty adult cyclists wore a Qstarz BT-Q1000XT GPS data logger (Qstarz International Co., Taipei, Taiwan) and SenseCam (camera worn around the neck capturing multiple images every minute) for a mean time of 4 d. PALMS used distance and speed between global positioning system (GPS) points to classify whether each minute was part of a trip (yes/no), and if so, the trip mode (walking/running, bicycling, or in vehicle). SenseCam images were annotated to create the same classifications (i.e., trip yes/no and mode). Contingency tables (2 × 2) and confusion matrices were calculated at the minute level for PALMS versus SenseCam classifications. Mixed-effects linear regression models estimated agreement (mean differences and intraclass correlation coefficients) between PALMS and SenseCam with regard to minutes/day in each mode. RESULTS: Minute-level sensitivity, specificity, and negative predictive value were ≥88%, and positive predictive value was ≥75% for non-mode-specific trip detection. Seventy-two percent to 80% of outdoor walking/running minutes, 73% of bicycling minutes, and 74%-76% of in-vehicle minutes were correctly classified by PALMS. For minutes per day, PALMS had a mean bias (i.e., amount of over or under estimation) of 2.4-3.1 min (11%-15%) for walking/running, 2.3-2.9 min (7%-9%) for bicycling, and 4.3-5 min (15%-17%) for vehicle time. Intraclass correlation coefficients were ≥0.80 for all modes. CONCLUSIONS: PALMS has validity for processing GPS data to objectively measure time spent walking/running, bicycling, and in vehicle in population studies. Assessing travel patterns is one of many valuable applications of GPS in physical activity research that can improve our understanding of the determinants and health outcomes of active transportation as well as its effect on physical activity.


Assuntos
Exercício Físico , Sistemas de Informação Geográfica , Atividade Motora , Software/normas , Viagem , Adulto , Automóveis , Ciclismo , Feminino , Humanos , Masculino , Corrida , Caminhada
18.
F1000Res ; 3: 143, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520778

RESUMO

In this paper we present new data export modules for Cytoscape 3 that can generate network files for Cytoscape.js and D3.js. Cytoscape.js exporter is implemented as a core feature of Cytoscape 3, and D3.js exporter is available as a Cytoscape 3 app. These modules enable users to seamlessly export network and table data sets generated in Cytoscape to popular JavaScript library readable formats. In addition, we implemented template web applications for browser-based interactive network visualization that can be used as basis for complex data visualization applications for bioinformatics research. Example web applications created with these tools demonstrate how Cytoscape works in modern data visualization workflows built with traditional desktop tools and emerging web-based technologies. This interactivity enables researchers more flexibility than with static images, thereby greatly improving the quality of insights researchers can gain from them.

19.
F1000Res ; 3: 151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25165537

RESUMO

Modern genomic analysis often requires workflows incorporating multiple best-of-breed tools. GenomeSpace is a web-based visual workbench that combines a selection of these tools with mechanisms that create data flows between them. One such tool is Cytoscape 3, a popular application that enables analysis and visualization of graph-oriented genomic networks. As Cytoscape runs on the desktop, and not in a web browser, integrating it into GenomeSpace required special care in creating a seamless user experience and enabling appropriate data flows. In this paper, we present the design and operation of the Cytoscape GenomeSpace app, which accomplishes this integration, thereby providing critical analysis and visualization functionality for GenomeSpace users. It has been downloaded over 850 times since the release of its first version in September, 2013.

20.
Curr Protoc Bioinformatics ; 47: 8.13.1-24, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25199793

RESUMO

Cytoscape is one of the most popular open-source software tools for the visual exploration of biomedical networks composed of protein, gene, and other types of interactions. It offers researchers a versatile and interactive visualization interface for exploring complex biological interconnections supported by diverse annotation and experimental data, thereby facilitating research tasks such as predicting gene function and constructing pathways. Cytoscape provides core functionality to load, visualize, search, filter, and save networks, and hundreds of Apps extend this functionality to address specific research needs. The latest generation of Cytoscape (version 3.0 and later) has substantial improvements in function, user interface, and performance relative to previous versions. This protocol aims to jump-start new users with specific protocols for basic Cytoscape functions, such as installing Cytoscape and Cytoscape Apps, loading data, visualizing and navigating the networks, visualizing network associated data (attributes), and identifying clusters. It also highlights new features that benefit experienced users.


Assuntos
Genes , Proteínas , Software , Doença , Expressão Gênica , Humanos , Ligação Proteica , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...