Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(5): 1282-1292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459206

RESUMO

The bacterial flagellum is a macromolecular protein complex that harvests energy from uni-directional ion flow across the inner membrane to power bacterial swimming via rotation of the flagellar filament. Rotation is bi-directional, with binding of a cytoplasmic chemotactic response regulator controlling reversal, though the structural and mechanistic bases for rotational switching are not well understood. Here we present cryoelectron microscopy structures of intact Salmonella flagellar basal bodies (3.2-5.5 Å), including the cytoplasmic C-ring complexes required for power transmission, in both counter-clockwise and clockwise rotational conformations. These reveal 180° movements of both the N- and C-terminal domains of the FliG protein, which, when combined with a high-resolution cryoelectron microscopy structure of the MotA5B2 stator, show that the stator shifts from the outside to the inside of the C-ring. This enables rotational switching and reveals how uni-directional ion flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Flagelos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/metabolismo , Flagelos/química , Flagelos/ultraestrutura , Corpos Basais/metabolismo , Corpos Basais/química , Modelos Moleculares , Rotação , Conformação Proteica , Salmonella/metabolismo , Salmonella/química , Salmonella typhimurium/metabolismo , Salmonella typhimurium/química
2.
Nat Microbiol ; 9(4): 1089-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538833

RESUMO

Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/química , Transporte Proteico , Proteínas de Transporte/metabolismo
3.
Nucleic Acids Res ; 51(18): 9952-9960, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37534568

RESUMO

RNA conformational heterogeneity often hampers its high-resolution structure determination, especially for large and flexible RNAs devoid of stabilizing proteins or ligands. The adenosylcobalamin riboswitch exhibits heterogeneous conformations under 1 mM Mg2+ concentration and ligand binding reduces conformational flexibility. Among all conformers, we determined one apo (5.3 Å) and four holo cryo-electron microscopy structures (overall 3.0-3.5 Å, binding pocket 2.9-3.2 Å). The holo dimers exhibit global motions of helical twisting and bending around the dimer interface. A backbone comparison of the apo and holo states reveals a large structural difference in the P6 extension position. The central strand of the binding pocket, junction 6/3, changes from an 'S'- to a 'U'-shaped conformation to accommodate ligand. Furthermore, the binding pocket can partially form under 1 mM Mg2+ and fully form under 10 mM Mg2+ within the bound-like structure in the absence of ligand. Our results not only demonstrate the stabilizing ligand-induced conformational changes in and around the binding pocket but may also provide further insight into the role of the P6 extension in ligand binding and selectivity.

4.
Commun Biol ; 6(1): 739, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460791

RESUMO

NOT1, NOT10, and NOT11 form a conserved module in the CCR4-NOT complex, critical for post-transcriptional regulation in eukaryotes, but how this module contributes to the functions of the CCR4-NOT remains poorly understood. Here, we present cryo-EM structures of human and chicken NOT1:NOT10:NOT11 ternary complexes to sub-3 Å resolution, revealing an evolutionarily conserved, flexible structure. Through biochemical dissection studies, which include the Drosophila orthologs, we show that the module assembly is hierarchical, with NOT11 binding to NOT10, which then organizes it for binding to NOT1. A short proline-rich motif in NOT11 stabilizes the entire module assembly.


Assuntos
Ribonucleases , Fatores de Transcrição , Humanos , Ligação Proteica , Receptores CCR4/metabolismo , Ribonucleases/química , Fatores de Transcrição/metabolismo
5.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37390814

RESUMO

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Assuntos
Proteína Huntingtina , Proteínas Nucleares , Microscopia Crioeletrônica , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
6.
mBio ; 13(3): e0026722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35446127

RESUMO

Gliding motility using cell surface adhesins, and export of proteins by the type IX secretion system (T9SS) are two phylum-specific features of the Bacteroidetes. Both of these processes are energized by the GldLM motor complex, which transduces the proton motive force at the inner membrane into mechanical work at the outer membrane. We previously used cryo-electron microscopy to solve the structure of the GldLM motor core from Flavobacterium johnsoniae at 3.9-Å resolution (R. Hennell James, J. C. Deme, A. Kjaer, F. Alcock, et al., Nat Microbiol 6:221-233, 2021, https://dx.doi.org/10.1038/s41564-020-00823-6). Here, we present structures of homologous complexes from a range of pathogenic and environmental Bacteroidetes species at up to 3.0-Å resolution. These structures show that the architecture of the GldLM motor core is conserved across the Bacteroidetes phylum, although there are species-specific differences at the N terminus of GldL. The resolution improvements reveal a cage-like structure that ties together the membrane-proximal cytoplasmic region of GldL and influences gliding function. These findings add detail to our structural understanding of bacterial ion-driven motors that drive the T9SS and gliding motility. IMPORTANCE Many bacteria in the Bacteroidetes phylum use the type IX secretion system to secrete proteins across their outer membrane. Most of these bacteria can also glide across surfaces using adhesin proteins that are propelled across the cell surface. Both secretion and gliding motility are driven by the GldLM protein complex, which forms a nanoscale electrochemical motor. We used cryo-electron microscopy to study the structure of the GldLM protein complex from different species, including the human pathogens Porphyromonas gingivalis and Capnocytophaga canimorsus. The organization of the motor is conserved across species, but we find species-specific structural differences and resolve motor features at higher resolution. This work improves our understanding of the type IX secretion system, which is a virulence determinant in human and animal diseases.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Bacteroidetes , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Bacteroidetes/metabolismo , Microscopia Crioeletrônica
7.
Nat Commun ; 12(1): 7147, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880232

RESUMO

Cysteine plays an essential role in cellular redox homoeostasis as a key constituent of the tripeptide glutathione (GSH). A rate limiting step in cellular GSH synthesis is the availability of cysteine. However, circulating cysteine exists in the blood as the oxidised di-peptide cystine, requiring specialised transport systems for its import into the cell. System xc- is a dedicated cystine transporter, importing cystine in exchange for intracellular glutamate. To counteract elevated levels of reactive oxygen species in cancerous cells system xc- is frequently upregulated, making it an attractive target for anticancer therapies. However, the molecular basis for ligand recognition remains elusive, hampering efforts to specifically target this transport system. Here we present the cryo-EM structure of system xc- in both the apo and glutamate bound states. Structural comparisons reveal an allosteric mechanism for ligand discrimination, supported by molecular dynamics and cell-based assays, establishing a mechanism for cystine transport in human cells.


Assuntos
Antiporters/química , Antiporters/metabolismo , Cistina/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/biossíntese , Sistema y+ de Transporte de Aminoácidos/química , Sistema y+ de Transporte de Aminoácidos/metabolismo , Antiporters/genética , Bioquímica , Microscopia Crioeletrônica , Cisteína/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Células HEK293 , Humanos , Neoplasias , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
8.
Commun Biol ; 4(1): 1374, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880419

RESUMO

Huntington's disease results from expansion of a glutamine-coding CAG tract in the huntingtin (HTT) gene, producing an aberrantly functioning form of HTT. Both wildtype and disease-state HTT form a hetero-dimer with HAP40 of unknown functional relevance. We demonstrate in vivo and in cell models that HTT and HAP40 cellular abundance are coupled. Integrating data from a 2.6 Å cryo-electron microscopy structure, cross-linking mass spectrometry, small-angle X-ray scattering, and modeling, we provide a near-atomic-level view of HTT, its molecular interaction surfaces and compacted domain architecture, orchestrated by HAP40. Native mass spectrometry reveals a remarkably stable hetero-dimer, potentially explaining the cellular inter-dependence of HTT and HAP40. The exon 1 region of HTT is dynamic but shows greater conformational variety in the polyglutamine expanded mutant than wildtype exon 1. Our data provide a foundation for future functional and drug discovery studies targeting Huntington's disease and illuminate the structural consequences of HTT polyglutamine expansion.


Assuntos
Éxons , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteínas Nucleares/genética , Peptídeos/metabolismo , Microscopia Crioeletrônica , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura
9.
Nat Commun ; 12(1): 5892, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625558

RESUMO

Lipid droplets (LDs) are universal lipid storage organelles with a core of neutral lipids, such as triacylglycerols, surrounded by a phospholipid monolayer. This unique architecture is generated during LD biogenesis at endoplasmic reticulum (ER) sites marked by Seipin, a conserved membrane protein mutated in lipodystrophy. Here structural, biochemical and molecular dynamics simulation approaches reveal the mechanism of LD formation by the yeast Seipin Sei1 and its membrane partner Ldb16. We show that Sei1 luminal domain assembles a homooligomeric ring, which, in contrast to other Seipins, is unable to concentrate triacylglycerol. Instead, Sei1 positions Ldb16, which concentrates triacylglycerol within the Sei1 ring through critical hydroxyl residues. Triacylglycerol recruitment to the complex is further promoted by Sei1 transmembrane segments, which also control Ldb16 stability. Thus, we propose that LD assembly by the Sei1/Ldb16 complex, and likely other Seipins, requires sequential triacylglycerol-concentrating steps via distinct elements in the ER membrane and lumen.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Lipídeos de Membrana , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Triglicerídeos/metabolismo
10.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34433568

RESUMO

The SLC15 family of proton-coupled solute carriers PepT1 and PepT2 play a central role in human physiology as the principal route for acquiring and retaining dietary nitrogen. A remarkable feature of the SLC15 family is their extreme substrate promiscuity, which has enabled the targeting of these transporters for the improvement of oral bioavailability for several prodrug molecules. Although recent structural and biochemical studies on bacterial homologs have identified conserved sites of proton and peptide binding, the mechanism of peptide capture and ligand promiscuity remains unclear for mammalian family members. Here, we present the cryo-electron microscopy structure of the outward open conformation of the rat peptide transporter PepT2 in complex with an inhibitory nanobody. Our structure, combined with molecular dynamics simulations and biochemical and cell-based assays, establishes a framework for understanding peptide and prodrug recognition within this pharmaceutically important transporter family.


Assuntos
Pró-Fármacos , Simportadores , Animais , Microscopia Crioeletrônica , Mamíferos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportador 1 de Peptídeos/química , Peptídeos/metabolismo , Prótons , Ratos
11.
Structure ; 29(10): 1182-1191.e4, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34242558

RESUMO

Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.


Assuntos
Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Proteínas de Membrana Transportadoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação
12.
PLoS One ; 16(6): e0252800, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143799

RESUMO

Type three secretion is the mechanism of protein secretion found in bacterial flagella and injectisomes. At its centre is the export apparatus (EA), a complex of five membrane proteins through which secretion substrates pass the inner membrane. While the complex formed by four of the EA proteins has been well characterised structurally, little is known about the structure of the membrane domain of the largest subunit, FlhA in flagella, SctV in injectisomes. Furthermore, the biologically relevant nonameric assembly of FlhA/SctV has been infrequently observed and differences in conformation of the cytoplasmic portion of FlhA/SctV between open and closed states have been suggested to reflect secretion system specific differences. FlhA has been shown to bind to chaperone-substrate complexes in an open state, but in previous assembled ring structures, SctV is in a closed state. Here, we identify FlhA and SctV homologues that can be recombinantly produced in the oligomeric state and study them using cryo-electron microscopy. The structures of the cytoplasmic domains from both FlhA and SctV are in the open state and we observe a conserved interaction between a short stretch of residues at the N-terminus of the cytoplasmic domain, known as FlhAL/SctVL, with a groove on the adjacent protomer's cytoplasmic domain, which stabilises the nonameric ring assembly.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Microscopia Crioeletrônica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência/métodos , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/ultraestrutura , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Yersinia enterocolitica/genética , Yersinia enterocolitica/metabolismo
13.
Nature ; 595(7865): 130-134, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040256

RESUMO

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Pemetrexede/química , Pemetrexede/metabolismo , Transportador de Folato Acoplado a Próton/química , Transportador de Folato Acoplado a Próton/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Transporte Biológico , Humanos , Modelos Moleculares , Transportador de Folato Acoplado a Próton/ultraestrutura , Prótons
14.
Nat Microbiol ; 6(6): 712-721, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33931760

RESUMO

The bacterial flagellum is a macromolecular protein complex that enables motility in many species. Bacterial flagella self-assemble a strong, multicomponent drive shaft that couples rotation in the inner membrane to the micrometre-long flagellar filament that powers bacterial swimming in viscous fluids1-3. Here, we present structures of the intact Salmonella flagellar basal body4, encompassing the inner membrane rotor, drive shaft and outer-membrane bushing, solved using cryo-electron microscopy to resolutions of 2.2-3.7 Å. The structures reveal molecular details of how 173 protein molecules of 13 different types assemble into a complex spanning two membranes and a cell wall. The helical drive shaft at one end is intricately interwoven with the rotor component with both the export gate complex and the proximal rod forming interactions with the MS-ring. At the other end, the drive shaft distal rod passes through the LP-ring bushing complex, which functions as a molecular bearing anchored in the outer membrane through interactions with the lipopolysaccharide. The in situ structure of a protein complex capping the drive shaft provides molecular insights into the assembly process of this molecular machine.


Assuntos
Corpos Basais/ultraestrutura , Salmonella/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corpos Basais/metabolismo , Microscopia Crioeletrônica , Flagelos/genética , Flagelos/metabolismo , Flagelos/ultraestrutura , Salmonella/genética , Salmonella/metabolismo
15.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758081

RESUMO

Complement, contact activation, coagulation, and fibrinolysis are serum protein cascades that need strict regulation to maintain human health. Serum glycoprotein, a C1 inhibitor (C1-INH), is a key regulator (inhibitor) of serine proteases of all the above-mentioned pathways. Recently, an autotransporter protein, virulence-associated gene 8 (Vag8), produced by the whooping cough pathogen, Bordetella pertussis, was shown to bind to C1-INH and interfere with its function. Here, we present the structure of the Vag8-C1-INH complex determined using cryo-electron microscopy at a 3.6-Å resolution. The structure shows a unique mechanism of C1-INH inhibition not employed by other pathogens, where Vag8 sequesters the reactive center loop of C1-INH, preventing its interaction with the target proteases.IMPORTANCE The structure of a 10-kDa protein complex is one of the smallest to be determined using cryo-electron microscopy at high resolution. The structure reveals that C1-INH is sequestered in an inactivated state by burial of the reactive center loop in Vag8. By so doing, the bacterium is able to simultaneously perturb the many pathways regulated by C1-INH. Virulence mechanisms such as the one described here assume more importance given the emerging evidence about dysregulation of contact activation, coagulation, and fibrinolysis leading to COVID-19 pneumonia.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/patogenicidade , Proteína Inibidora do Complemento C1/metabolismo , Evasão da Resposta Imune , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Coagulação Sanguínea , Bordetella pertussis/química , Bordetella pertussis/metabolismo , Proteína Inibidora do Complemento C1/química , Proteínas do Sistema Complemento/metabolismo , Microscopia Crioeletrônica , Fibrinólise , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo , Virulência , Fatores de Virulência de Bordetella
16.
Nat Microbiol ; 6(2): 221-233, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432152

RESUMO

Three classes of ion-driven protein motors have been identified to date: ATP synthase, the bacterial flagellar motor and a proton-driven motor that powers gliding motility and the type 9 protein secretion system in Bacteroidetes bacteria. Here, we present cryo-electron microscopy structures of the gliding motility/type 9 protein secretion system motors GldLM from Flavobacterium johnsoniae and PorLM from Porphyromonas gingivalis. The motor is an asymmetric inner membrane protein complex in which the single transmembrane helices of two periplasm-spanning GldM/PorM proteins are positioned inside a ring of five GldL/PorL proteins. Mutagenesis and single-molecule tracking identify protonatable amino acid residues in the transmembrane domain of the complex that are important for motor function. Our data provide evidence for a mechanism in which proton flow results in rotation of the periplasm-spanning GldM/PorM dimer inside the intra-membrane GldL/PorL ring to drive processes at the bacterial outer membrane.


Assuntos
Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos/química , Flavobacterium/fisiologia , Porphyromonas gingivalis/fisiologia , Microscopia Crioeletrônica , Flavobacterium/metabolismo , Movimento , Periplasma/metabolismo , Porphyromonas gingivalis/metabolismo , Domínios Proteicos , Multimerização Proteica , Prótons , Imagem Individual de Molécula
17.
J Struct Biol X ; 4: 100040, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33294840

RESUMO

We here introduce the third major release of the SIMPLE (Single-particle IMage Processing Linux Engine) open-source software package for analysis of cryogenic transmission electron microscopy (cryo-EM) movies of single-particles (Single-Particle Analysis, SPA). Development of SIMPLE 3.0 has been focused on real-time data processing using minimal CPU computing resources to allow easy and cost-efficient scaling of processing as data rates escalate. Our stream SPA tool implements the steps of anisotropic motion correction and CTF estimation, rapid template-based particle identification and 2D clustering with automatic class rejection. SIMPLE 3.0 additionally features an easy-to-use web-based graphical user interface (GUI) that can be run on any device (workstation, laptop, tablet or phone) and supports a remote multi-user environment over the network. The new project-based execution model automatically records the executed workflow and represents it as a flow diagram in the GUI. This facilitates meta-data handling and greatly simplifies usage. Using SIMPLE 3.0, it is possible to automatically obtain a clean SP data set amenable to high-resolution 3D reconstruction directly upon completion of the data acquisition, without the need for extensive image processing post collection. Only minimal standard CPU computing resources are required to keep up with a rate of ∼300 Gatan K3 direct electron detector movies per hour. SIMPLE 3.0 is available for download from simplecryoem.com.

18.
Nat Microbiol ; 5(12): 1616, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33168990

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Nat Microbiol ; 5(12): 1553-1564, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929189

RESUMO

The bacterial flagellum is the prototypical protein nanomachine and comprises a rotating helical propeller attached to a membrane-embedded motor complex. The motor consists of a central rotor surrounded by stator units that couple ion flow across the cytoplasmic membrane to generate torque. Here, we present the structures of the stator complexes from Clostridium sporogenes, Bacillus subtilis and Vibrio mimicus, allowing interpretation of the extensive body of data on stator mechanism. The structures reveal an unexpected asymmetric A5B2 subunit assembly where the five A subunits enclose the two B subunits. Comparison to structures of other ion-driven motors indicates that this A5B2 architecture is fundamental to bacterial systems that couple energy from ion flow to generate mechanical work at a distance and suggests that such events involve rotation in the motor structures.


Assuntos
Bacillus subtilis/química , Clostridium/química , Flagelos/química , Vibrio mimicus/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/genética , Clostridium/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Rotação , Vibrio mimicus/genética , Vibrio mimicus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...