Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007199

RESUMO

In the synthesis of metal-organic frameworks (MOFs), the choice of the metal precursor plays a key role because of the influence that it can exert on the crystallization kinetics. The present work explores the use of metal-carbamato complexes for the synthesis of benchmark MOFs, namely HKUST-1 and UiO-66. Cu2(O2CNEt2)4·2NHEt2 and Zr(O2CNEt2)4, prepared using straightforward CO2 fixation reactions starting from the corresponding metal chlorides and diethylamine, were employed as metal precursors for MOF formation. The synthesis conditions, including the solvent, temperature, and ligand protonation degree, were systematically investigated, revealing metal carbamates as highly reactive precursors due to their prompt release of CO2 and amine upon reaction with protic species, i.e., the polycarboxylic linkers. This property of metal carbamates allowed us to identify room temperature protocols to achieve MOFs with comparable properties to those obtained using traditional metal precursors. Subsequent optimization of the reaction conditions led to the design of a one-pot synthetic strategy for HKUST-1, starting directly from copper(II) chloride and diethylamine under a CO2 atmosphere. The MOFs were characterized using various techniques, including powder X-ray diffraction, N2 sorption analysis, 1H nuclear magnetic resonance spectroscopy, and CHN elemental analysis, and compared to reference samples prepared according to literature procedures.

2.
ACS Catal ; 13(22): 14614-14626, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026813

RESUMO

Borane cluster-based porous covalent networks, named activated borane (ActB), were prepared by cothermolysis of decaborane(14) (nido-B10H14) and selected hydrocarbons (toluene, ActB-Tol; cyclohexane, ActB-cyHx; and n-hexane, ActB-nHx) under anaerobic conditions. These amorphous solid powders exhibit different textural and Lewis acid (LA) properties that vary depending on the nature of the constituent organic linker. For ActB-Tol, its LA strength even approaches that of the commonly used molecular LA, B(C6F5)3. Most notably, ActBs can act as heterogeneous LA catalysts in hydrosilylation/deoxygenation reactions with various carbonyl substrates as well as in the gas-phase dehydration of ethanol. These studies reveal the potential of ActBs in catalytic applications, showing (a) the possibility for tuning catalytic reaction outcomes (selectivity) in hydrosilylation/deoxygenation reactions by changing the material's composition and (b) the very high activity toward ethanol dehydration that exceeds the commonly used γ-Al2O3 by achieving a stable conversion of ∼93% with a selectivity for ethylene production of ∼78% during a 17 h continuous period on stream at 240 °C.

3.
Inorg Chem ; 62(38): 15479-15489, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37682020

RESUMO

Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.

4.
Dalton Trans ; 52(18): 5865-5869, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37102679

RESUMO

We report the synthesis and characterisation of a cationic metal-organic framework (MOF) based on ZrIV and L-aspartate and containing nitrate as an extra framework counteranion, named MIP-202-NO3. The ion exchange properties of MIP-202-NO3 were preliminarily investigated to evaluate its potential as a platform for controlled release of nitrate, finding that it readily releases nitrate in aqueous solution.

5.
Inorg Chem ; 61(47): 18990-18997, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36367986

RESUMO

The rational design of metal-organic frameworks (MOFs) is one of the driving forces behind the great success that this class of materials is experiencing. The so-called isoreticular approach is a key design tool, very often used to tune the size, steric properties, and additional functional groups of the linker used. In this work, we go one step further and show that even linkers with two different coordinating groups, namely, phosphonate and phosphinate, can form isoreticular MOFs. This effectively bridges the gap between MOFs utilizing phosphinate and phosphonate coordinating groups. Using a novel bifunctional ligand, 4-[hydroxy(methyl)phosphoryl]phenylphosphonic acid [H3PPP(Me)], we were able to prepare ICR-12, a MOF isoreticular to already published MOFs containing bisphosphinate linkers (e.g., ICR-4). An isostructural MOF ICR-13 was also successfully prepared using 1,4-benzenediphosphonic acid. We envisage that this strategy can be used to further enlarge the pool of MOFs.

6.
Chemistry ; 28(67): e202201885, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36017982

RESUMO

The unprecedented co-thermolysis of decaborane(14) (nido-B10 H14 ) and toluene results in a novel porous material (that we have named "activated borane") containing micropores between 1.0 and 1.5 nm in diameter and a specific surface area of 774 m2 g-1 (Ar, 87 K) that is thermally stable up to 1000 °C. Solid state 1 H, 11 B and 13 C MAS NMR, UV-vis and IR spectroscopies suggest an amorphous structure of borane clusters interconnected by toluene moieties in a ratio of about three toluene molecules for every borane cluster. In addition, the structure contains Lewis-acidic tri-coordinated boron sites giving it some unique properties. Activated borane displays high sorption capacity for pollutants such as sulfamethoxazole, tramadol, diclofenac and bisphenol A that exceed the capacity of commercially-available activated carbon. The consistency in properties for each batch made, and the ease of its synthesis, make activated borane a promising porous material worthy of broad attention.

7.
J Org Chem ; 87(15): 10034-10043, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35839127

RESUMO

As a preliminary step toward its condensation into the porous polymer Activated Borane, the thermolysis of nido-B10H14 (1) in benzene at 200 °C results in the generation of a number of phenylated borane molecular species. The principal product is the new monophenylated compound 5-Ph-nido-B10H13 (2), isolated in 48% yield (based on consumption of 1) and structurally characterized by single-crystal X-ray diffraction analysis, NMR, and mass spectrometry along with other minor products, such as 6-Ph-nido-B10H13 (3), for which we observe UV-light-driven conversion into 2 via a "vertex-flip" mechanism, and novel diphenylated 5,8-Ph2-nido-B10H12 (4). Together, the phenylated derivatives provide a valuable insight into the assembly of Activated Borane and ultimately inform on its structure. The new compounds also display strong blue fluorescence in both solid-state and in solution and are the first examples of the direct phenylation of nido-B10H14, thus opening the door to the straight-forward synthesis of highly luminescent organic-borane hybrid systems.


Assuntos
Boranos , Boranos/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética
8.
Inorg Chem ; 61(19): 7506-7512, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35512292

RESUMO

Metal-organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P3̅ space group and contain arrays of parallel linear pores lined with hydrophilic noncoordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to a proton conductivity of up to 4.26 × 10-4 S cm-1 for ICR-11. The presented study demonstrates the high potential of phosphinate MOFs for the fabrication of proton conductors.

9.
Inorg Chem ; 59(8): 5538-5545, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32275140

RESUMO

Porous metal-organic frameworks (MOFs) have excellent characteristics for the adsorptive removal of environmental pollutants. Herein, we introduce a new series of highly stable MOFs constructed using Fe3+ and Al3+ metal ions and bisphosphinate linkers. The isoreticular design leads to ICR-2, ICR-6, and ICR-7 MOFs with a honeycomb arrangement of linear pores, surface areas up to 1360 m2 g-1, and high solvothermal stabilities. In most cases, their sorption capacity is retained even after 24 h of reflux in water. The choice of the linkers allows for fine-tuning of the pore sizes and the chemical nature of the pores. This feature can be utilized for the optimization of host-guest interactions between molecules and the pore walls. Water pollution by various endocrine disrupting chemicals has been considered a global threat to public health. In this work, we prove that the chemical stability and hydrophobic nature of the synthesized series of MOFs result in the remarkable sorption properties of these materials for endocrine disruptor bisphenol A.

10.
Inorg Chem ; 58(24): 16546-16552, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31794199

RESUMO

Recent studies have unraveled the potential of octahedral molybdenum cluster complexes (Mo6) as relevant red phosphors and photosensitizers of singlet oxygen, O2(1Δg), for photobiological applications. However, these complexes tend to hydrolyze in an aqueous environment, which deteriorates their properties and limits their applications. To address this issue, we show that phenylphosphinates are extraordinary apical ligands for the construction of Mo6 complexes. These new complexes display unmatched luminescence quantum yields and singlet oxygen production in aqueous solutions. More importantly, the complex with diphenylphosphinate ligands is the only stable complex of these types in aqueous media. These complexes internalize in lysosomes of HeLa cells, have no dark toxicity, and yet are phototoxic in the submicromolar concentration range. The superior hydrolytic stability of the diphenylphosphinate complex allows for conservation of its photophysical properties and biological activity over a long period, making it a promising compound for photobiological applications.

11.
Beilstein J Nanotechnol ; 9: 2960-2967, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546993

RESUMO

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.

12.
Inorg Chem ; 57(22): 14290-14297, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30371080

RESUMO

Zirconium-based metal-organic frameworks were recently investigated as catalysts for degradation of organophosphate toxic compounds, such as pesticides or chemical warfare agents. The most utilized UiO-66 is considered as a stable material for these applications in an aqueous environment. However, the presented results indicate that the properties of UiO-66 are changing considerably in aqueous media under common conditions used for organophosphate degradations, and therefore its catalytic activity is not related to the number of structural defects created during the material synthesis. We delineate the stability of UiO-66 in water of various pHs, the in situ formation of new catalytic sites, and the correlation of these two parameters with the degradation rate of a model organophosphate pollutant, dimethyl-4-nitrophenyl phosphate (methyl-paraoxon). The stability was quantified using high-performance liquid chromatography (HPLC) by measuring the amounts of leached terephthalic acid, the linker of UiO-66, and monocarboxylic acids, the modulators bound at UiO-66 defects. We demonstrate that the HPLC analysis is a more suitable method for metal-organic frameworks stability assessment than commonly used methods, e.g., powder X-ray diffraction, adsorption isotherms, or electron microscopy.

13.
Org Biomol Chem ; 16(39): 7274-7281, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30259016

RESUMO

The development of effective photosensitizers is particularly attractive for photodynamic therapy of cancer. Three novel porphyrin photosensitizers functionalized with phosphinic groups were synthesized and their physicochemical, photophysical, and photobiological properties were collected. Phosphinic acid groups (R1R2POOH) attached to the porphyrin moiety (R1) contain different R2 substituents (methyl, isopropyl, phenyl in this study). The presence of phosphinic groups does not influence absorption and photophysical properties of the porphyrin units, including the O2(1Δg) productivity. In vitro studies show that these porphyrins accumulate in cancer cells, are inherently nontoxic, however, exhibit high phototoxicity upon irradiation with visible light with their phototoxic efficacy tuned by R2 substituents on the phosphorus centre. Thus, phosphinatophenylporphyrin with isopropyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake. We demonstrate that these porphyrins are attractive candidates for photodynamic applications since their photodynamic efficacy can be easily tuned by the R2 substituent.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Células HeLa , Humanos , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Albumina Sérica Humana/metabolismo
14.
Angew Chem Int Ed Engl ; 57(18): 5016-5019, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29451728

RESUMO

Metal-organic frameworks (MOFs) are a chemically and topologically diverse family of materials composed of inorganic nodes and organic linkers bound together by coordination bonds. Presented here are two significant innovations in this field. The first is the use of a new coordination group, phenylene-1,4-bis(methylphosphinic acid) (PBPA), a phosphinic acid analogue of the commonly used terephtalic acid. Use of this new linker group leads to the formation of a hydrothermally stable and permanently porous MOF structure. The second innovation is the application of electron-diffraction tomography, coupled with dynamic refinement of the EDT data, to the elucidation of the structure of the new material, including the localization of hydrogen atoms.

15.
ACS Appl Mater Interfaces ; 10(10): 8527-8535, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29470048

RESUMO

Microbial colonization of biomedical devices is a recognized complication contributing to healthcare-associated infections. One of the possible approaches to prevent surfaces from the biofilm formation is antimicrobial photodynamic inactivation based on the cytotoxic effect of singlet oxygen, O2(1Δg), a short-lived, highly oxidative species, produced by energy transfer between excited photosensitizers and molecular oxygen. We synthesized porphyrin-based covalent organic frameworks (COFs) by Schiff-base chemistry. These novel COFs have a three-dimensional, diamond-like structure. The detailed analysis of their photophysical and photochemical properties shows that the COFs effectively produce O2(1Δg) under visible light irradiation, and especially three-dimensional structures have strong antibacterial effects toward Pseudomonas aeruginosa and Enterococcus faecalis biofilms. The COFs exhibit high photostability and broad spectral efficiency. Hence, the porphyrinic COFs are suitable candidates for the design of antibacterial coating for indoor applications.


Assuntos
Estruturas Metalorgânicas/química , Biofilmes , Fármacos Fotossensibilizantes , Porfirinas , Oxigênio Singlete
16.
J Colloid Interface Sci ; 499: 138-144, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28365439

RESUMO

This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps.

17.
J Mater Chem B ; 5(9): 1815-1821, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263922

RESUMO

The photocytotoxic activity of porphyrin-containing materials including metal-organic frameworks (MOFs) has attracted ever increasing interest. We have developed a simple synthesis of hexagonal PCN-222/MOF-545 nanoparticles, which are powerful in inducing reactive oxygen species-mediated apoptosis of cancer cells upon visible light irradiation. The extent of the cytotoxic effect well correlates with the nanoparticle size and structural instability. High phototoxicity of the presented nanoparticles and their deactivation within several hours open up the door to possible applications in cancer therapy.

18.
J Colloid Interface Sci ; 452: 174-179, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25942095

RESUMO

CuO nanosheets were prepared by the controlled delamination of layered copper hydroxide acetate followed by the in situ solvothermal transformation of hydroxide to oxide. The reaction was performed in 1-butanol in order to prevent recrystallization or nanoparticle aggregation. Analyses by small angle X-ray scattering, transmission electron microscopy, and atomic force microscopy revealed that the CuO nanosheets are approximately 1 nm thin, corresponding to three to four stacked CuO6 octahedral layers. The average lateral size is approximately 5 nm. The nanosheets form stable dispersions in 1-butanol that are suitable for the fabrication of transparent and homogeneous CuO thin films by spin-coating or inkjet printing techniques. The present synthesis is a rare example of the top down strategy leading to the nanometric two-dimensional nanosheets of non-layered oxide materials.

19.
Langmuir ; 30(1): 380-6, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24328455

RESUMO

Nanometric thin films were prepared by dip-coating and inkjet printing ZnO nanosheets on glass plates. The side-by-side alignment of the ZnO nanosheets on the substrate resulted in thin, transparent, oriented ZnO surfaces with the high-energy {001} facets exposed. The method of nanosheet deposition affected the film morphology; the dip-coated films were very smooth and nonporous, while the inkjet-printed films were rough and porous with the estimated void volume approximately 60-70% of the total film volume. The first-order rate constants for the photocatalytic degradation of 4-chlorophenol on the nanosheet-based films were approximately 2 times larger than those on nanocolumnar ZnO films or ZnO films prepared by the sol-gel technique. We attribute the high photocatalytic activity of the ZnO nanosheets to the fact that their {001} facets were predominantly exposed to the oxidized substrate. This surface arrangement and the simplicity of fabricating the ZnO nanosheet-based films make them promising for the construction of optical devices and dye-sensitized solar cells.

20.
Inorg Chem ; 52(5): 2779-86, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23425315

RESUMO

Rare-earth layered hydroxides with intercalated tetrasulfonated porphyrins and corresponding to the chemical formula Ln2(OH)4.7(Por)0.33·2H2O (Ln = Eu(3+), Tb(3+); Por = 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and PdTPPS) have been prepared to investigate their photophysical properties. A slight variation of the synthetic procedure led to the metal-organic framework (MOF) assembled from a distorted octahedral oxometalate clusters [Eu6(µ6-O)(µ3-OH)8(H2O)14](8+). These secondary building units (SBUs) are linked together by six distorted porphyrin units. During activation, the original SBU loses not only water molecules from the coordination sphere but also the central µ6-O atom. The loss of the central atom results in the distortion of the octahedral [Eu6(µ6-O)(µ3-OH)8(H2O)14](8+) SBU into a trigonal antiprismatic [Eu6(µ3-OH)8(H2O)2](10+) SBU with two µ3-OH groups nearly in plane with the europium atoms and the reduction of pores to approximately 2 × 3 Å. As a result, the MOF has no accessible porosity. This transformation was thoroughly characterized by means of single-crystal X-ray crystallographic analysis of both phases. Solid-state photophysical investigations suggest that the MOF material is fluorescent; however, in contrast to the prepared layered hydroxides, the as-prepared MOF is an effective sensitizer of singlet oxygen, O2((1)Δg), with a relatively long lifetime of 23 ± 1 µs. The transition is also accompanied by variation in photophysical properties of the coordinated TPPS. The alteration of the fluorescence properties and of the O2((1)Δg) lifetime presents an opportunity for preparation of MOFs with oxygen-sensing ability or with oxidation potential toward organic molecules by O2((1)Δg).


Assuntos
Elementos da Série dos Lantanídeos/química , Metaloporfirinas/síntese química , Metaloporfirinas/química , Modelos Moleculares , Estrutura Molecular , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA