Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Neurooncol Adv ; 6(1): vdae093, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946879

RESUMO

Background: Primary CNS lymphoma (PCNSL) and glioblastoma (GBM) both represent frequent intracranial malignancies with differing clinical management. However, distinguishing PCNSL from GBM with conventional MRI can be challenging when atypical imaging features are present. We employed advanced dMRI for noninvasive characterization of the microstructure of PCNSL and differentiation from GBM as the most frequent primary brain malignancy. Methods: Multiple dMRI metrics including Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging, and Diffusion Microstructure Imaging were extracted from the contrast-enhancing tumor component in 10 PCNSL and 10 age-matched GBM on 3T MRI. Imaging findings were correlated with cell density and axonal markers obtained from histopathology. Results: We found significantly increased intra-axonal volume fractions (V-intra and intracellular volume fraction) and microFA in PCNSL compared to GBM (all P < .001). In contrast, mean diffusivity (MD), axial diffusivity (aD), and microADC (all P < .001), and also free water fractions (V-CSF and V-ISO) were significantly lower in PCNSL (all P < .01). Receiver-operating characteristic analysis revealed high predictive values regarding the presence of a PCNSL for MD, aD, microADC, V-intra, ICVF, microFA, V-CSF, and V-ISO (area under the curve [AUC] in all >0.840, highest for MD and ICVF with an AUC of 0.960). Comparative histopathology between PCNSL and GBM revealed a significantly increased cell density in PCNSL and the presence of axonal remnants in a higher proportion of samples. Conclusions: Advanced diffusion imaging enables the characterization of the microstructure of PCNSL and reliably distinguishes PCNSL from GBM. Both imaging and histopathology revealed a relatively increased cell density and a preserved axonal microstructure in PCNSL.

3.
Neuroradiology ; 66(7): 1161-1176, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676750

RESUMO

PURPOSE: Intracranial hypertension (IH) frequently complicates cerebral venous thrombosis (CVT). Distinct neuroimaging findings are associated with IH, yet their discriminative power, reversibility and factors favoring normalization in prospective CVT patients are unknown. We determined test performance measures of neuroimaging signs in acute CVT patients, their longitudinal change under anticoagulation, association with IH at baseline and with recanalization at follow-up. METHODS: We included 26 consecutive acute CVT patients and 26 healthy controls. Patients were classified as having IH based on CSF pressure > 25 cmH2O and/or papilledema on ophthalmological examination or ocular MRI. We assessed optic nerve sheath diameter (ONSD), optic nerve tortuousity, bulbar flattening, lateral and IVth ventricle size, pituitary configuration at baseline and follow-up, and their association with IH and venous recanalization. RESULTS: 46% of CVT patients had IH. ONSD enlargement > 5.8 mm, optic nerve tortuousity and pituitary grade ≥ III had highest sensitivity, ocular bulb flattening and pituitary grade ≥ III highest specificity for IH. Only ONSD reliably discriminated IH at baseline. Recanalization was significantly associated with regressive ONSD and pituitary grade. Other neuroimaging signs tended to regress with recanalization. After treatment, 184.9 ± 44.7 days after diagnosis, bulbar flattening resolved, whereas compared with controls ONSD enlargement (p < 0.001) and partially empty sella (p = 0.017), among other indicators, persisted. CONCLUSION: ONSD and pituitary grading have a high diagnostic value in diagnosing and monitoring CVT-associated IH. Given their limited sensitivity during early CVT and potentially persistent alterations following IH, neuroimaging indicators can neither replace CSF pressure measurement in diagnosing IH, nor determine the duration of anticoagulation.


Assuntos
Hipertensão Intracraniana , Trombose Intracraniana , Trombose Venosa , Humanos , Masculino , Feminino , Hipertensão Intracraniana/diagnóstico por imagem , Adulto , Trombose Intracraniana/diagnóstico por imagem , Trombose Intracraniana/complicações , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/complicações , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Pessoa de Meia-Idade , Estudos de Casos e Controles , Estudos Prospectivos
4.
AJNR Am J Neuroradiol ; 45(3): 277-283, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38302197

RESUMO

BACKGROUND AND PURPOSE: The established global threshold of rCBF <30% for infarct core segmentation can lead to false-positives, as it does not account for the differences in blood flow between GM and WM and patient-individual factors, such as microangiopathy. To mitigate this problem, we suggest normalizing each voxel not only with a global reference value (ie, the median value of normally perfused tissue) but also with its local contralateral counterpart. MATERIALS AND METHODS: We retrospectively enrolled 2830 CTP scans with suspected ischemic stroke, of which 335 showed obvious signs of microangiopathy. In addition to the conventional, global normalization, a local normalization was performed by dividing the rCBF maps with their mirrored and smoothed counterpart, which sets each voxel value in relation to the contralateral counterpart, intrinsically accounting for GM and WM differences and symmetric patient individual microangiopathy. Maps were visually assessed and core volumes were calculated for both methods. RESULTS: Cases with obvious microangiopathy showed a strong reduction in false-positives by using local normalization (mean 14.7 mL versus mean 3.7 mL in cases with and without microangiopathy). On average, core volumes were slightly smaller, indicating an improved segmentation that was more robust against naturally low blood flow values in the deep WM. CONCLUSIONS: The proposed method of local normalization can reduce overestimation of the infarct core, especially in the deep WM and in cases with obvious microangiopathy. False-positives in CTP infarct core segmentation might lead to less-than-optimal therapy decisions when not correctly interpreted. The proposed method might help mitigate this problem.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/terapia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Infarto , Circulação Cerebrovascular , Perfusão , Imagem de Perfusão/métodos
5.
Neuroradiology ; 66(4): 601-608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367095

RESUMO

PURPOSE: In cases of acute intracerebral hemorrhage (ICH) volume estimation is of prognostic and therapeutic value following minimally invasive surgery (MIS). The ABC/2 method is widely used, but suffers from inaccuracies and is time consuming. Supervised machine learning using convolutional neural networks (CNN), trained on large datasets, is suitable for segmentation tasks in medical imaging. Our objective was to develop a CNN based machine learning model for the segmentation of ICH and of the drain and volumetry of ICH following MIS of acute supratentorial ICH on a relatively small dataset. METHODS: Ninety two scans were assigned to training (n = 29 scans), validation (n = 4 scans) and testing (n = 59 scans) datasets. The mean age (SD) was 70 (± 13.56) years. Male patients were 36. A hierarchical, patch-based CNN for segmentation of ICH and drain was trained. Volume of ICH was calculated from the segmentation mask. RESULTS: The best performing model achieved a Dice similarity coefficient of 0.86 and 0.91 for the ICH and drain respectively. Automated ICH volumetry yielded high agreement with ground truth (Intraclass correlation coefficient = 0.94 [95% CI: 0.91, 0.97]). Average difference in the ICH volume was 1.33 mL. CONCLUSION: Using a relatively small dataset, originating from different CT-scanners and with heterogeneous voxel dimensions, we applied a patch-based CNN framework and successfully developed a machine learning model, which accurately segments the intracerebral hemorrhage (ICH) and the drains. This provides automated and accurate volumetry of the bleeding in acute ICH treated with minimally invasive surgery.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Tomografia Computadorizada por Raios X/métodos , Hemorragia Cerebral , Aprendizado de Máquina , Procedimentos Cirúrgicos Minimamente Invasivos , Processamento de Imagem Assistida por Computador/métodos
6.
Clin Neuroradiol ; 34(2): 391-401, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277058

RESUMO

PURPOSE: To quantify the effects of CSF pressure alterations on intracranial venous morphology and hemodynamics in idiopathic intracranial hypertension (IIH) and spontaneous intracranial hypotension (SIH) and assess reversibility when the underlying cause is resolved. METHODS: We prospectively examined venous volume, intracranial venous blood flow and velocity, including optic nerve sheath diameter (ONSD) as a noninvasive surrogate of CSF pressure changes in 11 patients with IIH, 11 age-matched and sex-matched healthy controls and 9 SIH patients, before and after neurosurgical closure of spinal dural leaks. We applied multiparametric MRI including 4D flow MRI, time-of-flight (TOF) and T2-weighted half-Fourier acquisition single-shot turbo-spin echo (HASTE). RESULTS: Sinus volume overlapped between groups at baseline but decreased after treatment of intracranial hypotension (p = 0.067) along with a significant increase of ONSD (p = 0.003). Blood flow in the middle and dorsal superior sagittal sinus was remarkably lower in patients with higher CSF pressure (i.e., IIH versus controls and SIH after CSF leak closure) but blood flow velocity was comparable cross-sectionally between groups and longitudinally in SIH. CONCLUSION: We were able to demonstrate the interaction of CSF pressure, venous volumetry, venous hemodynamics and ONSD using multiparametric brain MRI. Closure of CSF leaks in SIH patients resulted in symptoms suggestive of increased intracranial pressure and caused a subsequent decrease of intracranial venous volume and of blood flow within the superior sagittal sinus while ONSD increased. In contrast, blood flow parameters from 4D flow MRI did not discriminate IIH, SIH and controls as hemodynamics at baseline overlapped at most vessel cross-sections.


Assuntos
Pressão do Líquido Cefalorraquidiano , Circulação Cerebrovascular , Hipotensão Intracraniana , Pseudotumor Cerebral , Humanos , Feminino , Masculino , Adulto , Hipotensão Intracraniana/diagnóstico por imagem , Hipotensão Intracraniana/fisiopatologia , Circulação Cerebrovascular/fisiologia , Pseudotumor Cerebral/fisiopatologia , Pseudotumor Cerebral/diagnóstico por imagem , Pseudotumor Cerebral/cirurgia , Pressão do Líquido Cefalorraquidiano/fisiologia , Veias Cerebrais/diagnóstico por imagem , Veias Cerebrais/fisiopatologia , Pessoa de Meia-Idade , Angiografia por Ressonância Magnética/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento Tridimensional/métodos , Estudos Prospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade , Hemodinâmica/fisiologia , Hipertensão Intracraniana/fisiopatologia , Hipertensão Intracraniana/diagnóstico por imagem
7.
Epilepsia ; 65(3): 651-663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258618

RESUMO

OBJECTIVE: We aimed to assess the ability of semiautomated electric source imaging (ESI) from long-term video-electroencephalographic (EEG) monitoring (LTM) to determine the epileptogenicity of temporopolar encephaloceles (TEs) in patients with temporal lobe epilepsy. METHODS: We conducted a retrospective study involving 32 temporal lobe epilepsy patients with TEs as potentially epileptogenic lesions in structural magnetic resonance imaging scans. Findings were validated through invasive intracerebral stereo-EEG in six of 32 patients and postsurgical outcome after tailored resection of the TE in 17 of 32 patients. LTM (mean duration = 6 days) was performed using the 10/20 system with additional T1/T2 for all patients and sphenoidal electrodes in 23 of 32 patients. Semiautomated detection and clustering of interictal epileptiform discharges (IEDs) were carried out to create IED types. ESI was performed on the averages of the two most frequent IED types per patient, utilizing individual head models, and two independent inverse methods (sLORETA [standardized low-resolution brain electromagnetic tomography], MUSIC [multiple signal classification]). ESI maxima concordance and propagation in spatial relation to TEs were quantified for sources with good signal quality (signal-to-noise ratio > 2, explained signal > 60%). RESULTS: ESI maxima correctly colocalized with a TE in 20 of 32 patients (62.5%) either at the onset or half-rising flank of at least one IED type per patient. ESI maxima showed propagation from the temporal pole to other temporal or extratemporal regions in 14 of 32 patients (44%), confirming propagation originating in the area of the TE. The findings from both inverse methods validated each other in 14 of 20 patients (70%), and sphenoidal electrodes exhibited the highest signal amplitudes in 17 of 23 patients (74%). The concordance of ESI with the TE predicted a seizure-free postsurgical outcome (Engel I vs. >I) with a diagnostic odds ratio of 2.1. SIGNIFICANCE: Semiautomated ESI from LTM often successfully identifies the epileptogenicity of TEs and the IED onset zone within the area of the TEs. Additionally, it shows potential predictive power for postsurgical outcomes in these patients.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Eletroencefalografia/métodos , Encefalocele/complicações , Encefalocele/diagnóstico por imagem , Estudos Retrospectivos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Imageamento por Ressonância Magnética
8.
Neuro Oncol ; 26(2): 374-386, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37713267

RESUMO

BACKGROUND: Central nervous system lymphomas (CNSL) display remarkable clinical heterogeneity, yet accurate prediction of outcomes remains challenging. The IPCG criteria are widely used in routine practice for the assessment of treatment response. However, the value of the IPCG criteria for ultimate outcome prediction is largely unclear, mainly due to the uncertainty in delineating complete from partial responses during and after treatment. METHODS: We explored various MRI features including semi-automated 3D tumor volume measurements at different disease milestones and their association with survival in 93 CNSL patients undergoing curative-intent treatment. RESULTS: At diagnosis, patients with more than 3 lymphoma lesions, periventricular involvement, and high 3D tumor volumes showed significantly unfavorable PFS and OS. At first interim MRI during treatment, the IPCG criteria failed to discriminate outcomes in responding patients. Therefore, we randomized these patients into training and validation cohorts to investigate whether 3D tumor volumetry could improve outcome prediction. We identified a 3D tumor volume reduction of ≥97% as the optimal threshold for risk stratification (=3D early response, 3D_ER). Applied to the validation cohort, patients achieving 3D_ER had significantly superior outcomes. In multivariate analyses, 3D_ER was independently prognostic of PFS and OS. Finally, we leveraged prognostic information from 3D MRI features and circulating biomarkers to build a composite metric that further improved outcome prediction in CNSL. CONCLUSIONS: We developed semi-automated 3D tumor volume measurements as strong and independent early predictors of clinical outcomes in CNSL patients. These radiologic features could help improve risk stratification and help guide future treatment approaches.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma não Hodgkin , Linfoma , Humanos , Carga Tumoral , Prognóstico , Imageamento por Ressonância Magnética , Linfoma/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem
9.
J Clin Med ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38068341

RESUMO

Endovascular therapy (EVT) is the standard treatment for ischemic stroke caused by a large vessel occlusion (LVO). The effectiveness of EVT for distal medium vessel occlusions (MDVOs) is still uncertain, but newer, smaller devices show potential for EVT in MDVOs. The new Solitaire X 3 mm device offers a treatment option for MDVOs. Our study encompassed consecutive cases of primary and secondary MDVOs treated with the Solitaire X 3 mm stent-retriever as first-line EVT device between January and December 2022 at 12 European stroke centers. The primary endpoint was a first-pass near-complete or complete reperfusion, defined as a modified treatment in cerebral infarction (mTICI) score of 2c/3. Additionally, we examined reperfusion results, National Institutes of Health Stroke Scale (NIHSS) scores at 24 h and discharge, device malfunctions, complications and procedural technical parameters. Sixty-eight patients (38 women, mean age 72 ± 14 years) were included in our study. Median NIHSS at admission was 11 (IQR 6-16). In 53 (78%) cases, a primary combined approach was used as the frontline technique. Among all enrolled patients, first-pass mTICI 2c/3 was achieved in 22 (32%) and final mTICI 2c/3 in 46 (67.6%) patients after a median of 1.5 (IQR 1-2) passes. Final reperfusion mTICI 2b/3 was observed in 89.7% of our cases. We observed no device malfunctions. Median NIHSS at discharge was 2 (IQR 0-4), and no symptomatic intracranial hemorrhages were reported. Based on our analysis, the utilization of the Solitaire X 3 mm device appears to be both effective and safe for performing EVT in cases of MDVO stroke.

10.
J Neurointerv Surg ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918908

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF)-venous fistulas (CVFs) are increasingly identified as a cause of spontaneous intracranial hypotension (SIH). Lateral decubitus digital subtraction myelography (LD-DSM) and CT myelography (LD-CTM) are mainly used for detection, but the most sensitive method is yet unknown. OBJECTIVE: To compare LD-DSM with LD-CTM for diagnostic yield of CVFs. METHODS: Patients with SIH diagnosed with a CVF between January 2021 and December 2022 in which the area of CVF(s) was covered by both diagnostic modalities were included. LD-CTM immediately followed LD-DSM without repositioning the spinal needle, and the second half of the contrast agent was injected at the CT scanner. Patients were awake or mildly sedated. Retrospectively, two neuroradiologists evaluated data independently and blinded for the presence of CVF. RESULTS: Twenty patients underwent a total of 27 combined LD-DSM/LD-CTM examinations (4/20 with follow-up and 3/20 with bilateral examinations). Both raters identified significantly more CVFs with LD-CTM than with LD-DSM (rater 1: 39 vs 9, P<0.001; rater 2: 42 vs 12, P<0.001). Inter-rater agreement was substantial for LD-DSM (κ=0.732) and LD-CTM (κ=0.655). The results remained significant after considering the senior rating for cases of disagreement (39 vs 10; P<0.001), and no CVF detected on LD-DSM was missed on LD-CTM. CONCLUSION: In this study, LD-CTM has a higher diagnostic yield for the detection of CVFs than LD-DSM and should supplement LD-DSM, but further studies are needed. LD-CTM can be easily acquired in awake or mildly sedated patients with the second half of contrast injected just before CT scanning, or it may be considered as a stand-alone investigation.

11.
AJNR Am J Neuroradiol ; 44(11): 1262-1269, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37884304

RESUMO

BACKGROUND AND PURPOSE: Glioblastomas and metastases are the most common malignant intra-axial brain tumors in adults and can be difficult to distinguish on conventional MR imaging due to similar imaging features. We used advanced diffusion techniques and structural histopathology to distinguish these tumor entities on the basis of microstructural axonal and fibrillar signatures in the contrast-enhancing tumor component. MATERIALS AND METHODS: Contrast-enhancing tumor components were analyzed in 22 glioblastomas and 21 brain metastases on 3T MR imaging using DTI-fractional anisotropy, neurite orientation dispersion and density imaging-orientation dispersion, and diffusion microstructural imaging-micro-fractional anisotropy. Available histopathologic specimens (10 glioblastomas and 9 metastases) were assessed for the presence of axonal structures and scored using 4-level scales for Bielschowsky staining (0: no axonal structures, 1: minimal axonal fragments preserved, 2: decreased axonal density, 3: no axonal loss) and glial fibrillary acid protein expression (0: no glial fibrillary acid protein positivity, 1: limited expression, 2: equivalent to surrounding parenchyma, 3: increased expression). RESULTS: When we compared glioblastomas and metastases, fractional anisotropy was significantly increased and orientation dispersion was decreased in glioblastomas (each P < .001), with a significant shift toward increased glial fibrillary acid protein and Bielschowsky scores. Positive associations of fractional anisotropy and negative associations of orientation dispersion with glial fibrillary acid protein and Bielschowsky scores were revealed, whereas no association between micro-fractional anisotropy with glial fibrillary acid protein and Bielschowsky scores was detected. Receiver operating characteristic curves revealed high predictive values of both fractional anisotropy (area under the curve = 0.8463) and orientation dispersion (area under the curve = 0.8398) regarding the presence of a glioblastoma. CONCLUSIONS: Diffusion imaging fractional anisotropy and orientation dispersion metrics correlated with histopathologic markers of directionality and may serve as imaging biomarkers in contrast-enhancing tumor components.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imagem de Tensor de Difusão/métodos , Proteína Glial Fibrilar Ácida , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia
12.
Epilepsia Open ; 8(4): 1581-1587, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565315

RESUMO

Brain atrophy associated with valproate therapy is known from single case reports and is frequently accompanied by cognitive deterioration. We present a case series of incidental findings of brain volume loss in children treated with valproate and employed automatic brain volumetry to assess the effect size of volume loss. 3D T1w datasets were automatically segmented into white matter, gray matter, and cerebrospinal fluid using the SPM-12 algorithm. Respective volumes of cerebrum and cerebellum were read out and normalized to the total intracranial volume. We identified six patients (median age 148.5 [85-178] months) who had received valproate for a median time of 5 (2-23) months prior to MRI in which a loss of brain volume was noted. None had reported the occurrence of new clinical symptoms. Volumetry showed a volume loss of up to 28% for cerebral GM, 25% for cerebellar GM, 10% for cerebral WM, and 20% for cerebellar WM. A volume loss of >5% in at least one of the subvolumes was found in all patients, with the more prominent volume loss in the cerebrum and in gray matter. In one patient, post-valproate MRI was available and showed normalization of brain volume. Our case series indicates that valproate therapy might be associated with an asymptomatic volume loss of brain parenchyma in children with epilepsy and that this volume loss is assessable with automatic volumetry.


Assuntos
Epilepsia , Substância Branca , Humanos , Criança , Idoso de 80 Anos ou mais , Ácido Valproico/uso terapêutico , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/tratamento farmacológico , Substância Cinzenta/diagnóstico por imagem
14.
Front Neurol ; 14: 1188717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342780

RESUMO

Background and purpose: The role of surgery in the treatment of intracerebral haemorrhage (ICH) remains controversial. Whereas open surgery has failed to show any clinical benefit, recent studies have suggested that minimal invasive procedures can indeed be beneficial, especially when they are applied at an early time point. This retrospective study therefore evaluated the feasibility of a free-hand bedside catheter technique with subsequent local lysis for early haematoma evacuation in patients with spontaneous supratentorial ICH. Methods: Patients with spontaneous supratentorial haemorrhage of a volume of >30 mL who were treated with bedside catheter haematoma evacuation were identified from our institutional database. The entry point and evacuation trajectory of the catheter were based on a 3D-reconstructed CT scan. The catheter was inserted bedside into the core of the haematoma, and urokinase (5,000 IE) was administered every 6 h for a maximum of 4 days. Evolution of haematoma volume, perihaemorrhagic edema, midline-shift, adverse events and functional outcome were analyzed. Results: A total of 110 patients with a median initial haematoma volume of 60.6 mL were analyzed. Haematoma volume decreased to 46.1 mL immediately after catheter placement and initial aspiration (with a median time to treatment of 9 h after ictus), and to 21.0 mL at the end of urokinase treatment. Perihaemorrhagic edema decreased significantly from 45.0 mL to 38.9 mL and midline-shift from 6.0 mm to 2.0 mm. The median NIHSS score improved from 18 on admission to 10 at discharge, and the median mRS at discharge was 4; the latter was even lower in patients who reached a target volume ≤ 15 mL at the end of local lysis. The in-hospital mortality rate was 8.2%, and catheter/local lysis-associated complications occurred in 5.5% of patients. Conclusion: Bedside catheter aspiration with subsequent urokinase irrigation is a safe and feasible procedure for treating spontaneous supratentorial ICH, and can immediately reduce the mass effects of haemorrhage. Additional controlled studies that assess the long-term outcome and generalizability of our findings are therefore warranted. Clinical trial registration: [www.drks.de], identifier [DRKS00007908].

15.
Clin Neuroradiol ; 33(3): 709-719, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36856785

RESUMO

PURPOSE: To evaluate the diagnostic accuracy of epilepsy-dedicated 3 Tesla MRI including post-processing by correlating MRI, histopathology, and postsurgical seizure outcomes. METHODS: 3 Tesla-MRI including a magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) sequence for post-processing using the morphometric analysis program MAP was acquired in 116 consecutive patients with drug-resistant focal epilepsy undergoing resection surgery. The MRI, histopathology reports and postsurgical seizure outcomes were recorded from the patient's charts. RESULTS: The MRI and histopathology were concordant in 101 and discordant in 15 patients, 3 no hippocampal sclerosis/gliosis only lesions were missed on MRI and 1 of 28 focal cortical dysplasia (FCD) type II associated with a glial scar was considered a glial scar only on MRI. In another five patients, MRI was suggestive of FCD, the histopathology was uneventful but patients were seizure-free following surgery. The MRI and histopathology were concordant in 20 of 21 glioneuronal tumors, 6 cavernomas, and 7 glial scars. Histopathology was negative in 10 patients with temporal lobe epilepsy, 4 of them had anteroinferior meningoencephaloceles. Engel class IA outcome was reached in 71% of patients. CONCLUSION: The proposed MRI protocol is highly accurate. No hippocampal sclerosis/gliosis only lesions are typically MRI negative. Small MRI positive FCD can be histopathologically missed, most likely due to sampling errors resulting from insufficient harvesting of tissue.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Esclerose Hipocampal , Humanos , Gliose , Esclerose , Resultado do Tratamento , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Epilepsia/patologia , Convulsões , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
16.
Abdom Radiol (NY) ; 48(4): 1329-1339, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36732406

RESUMO

PURPOSE: To assess whether high temporal/spatial resolution GRASP MRI acquired during routine clinical imaging can identify several degrees of renal function impairment referenced against renal dynamic scintigraphy. METHODS: This retrospective study consists of method development and method verification parts. During method development, patients subject to renal imaging using gadoterate meglumine and GRASP post-contrast MRI technique (TR/TE 3.3/1.6 ms; FoV320 × 320 mm; FA12°; Voxel1.1 × 1.1x2.5 mm) were matched into four equally-sized renal function groups (no-mild-moderate-severe impairment) according to their laboratory-determined estimated glomerular filtration rates (eGFR); 60|120 patients|kidneys were included. Regions-of-interest (ROIs) were placed on cortices, medullary pyramids and collecting systems of bilateral kidneys. Cortical perfusion, tubular concentration and collecting system excretion were determined as TimeCortex=Pyramid(sec), SlopeTubuli (sec-1), and TimeCollecting System (sec), respectively, and were measured by a combination of extraction of time intensity curves and respective quantitative parameters. For method verification, patients subject to GRASP MRI and renal dynamic scintigraphy (99mTc-MAG3, 100 MBq/patient) were matched into three renal function groups (no-mild/moderate-severe impairment). Split renal function parameters post 1.5-2.5 min as well as MAG3 TER were correlated with time intensity parameters retrieved using GRASP technique; 15|30 patients|kidneys were included. RESULTS: Method development showed differing values for TimeCortex=Pyramid(71|75|93|122 s), SlopeTubuli(2.6|2.1|1.3|0.5 s-1) and TimeCollecting System(90|111|129|139 s) for the four renal function groups with partial significant tendencies (several p-values < 0.001). In method verification, 29/30 kidneys (96.7%) were assigned to the correct renal function group. CONCLUSION: High temporal and spatial resolution GRASP MR imaging allows to identify several degrees of renal function impairment using routine clinical imaging with a high degree of accuracy.


Assuntos
Meios de Contraste , Interpretação de Imagem Assistida por Computador , Humanos , Estudos de Viabilidade , Estudos Retrospectivos , Interpretação de Imagem Assistida por Computador/métodos , Rim/diagnóstico por imagem , Rim/fisiologia , Imageamento por Ressonância Magnética/métodos , Cintilografia
17.
J Neurointerv Surg ; 15(7): 708-711, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35853700

RESUMO

BACKGROUND: Minimally invasive intracranial drain placement is a common neurosurgical emergency procedure in patients with intracerebral hemorrhage (ICH). We aimed to retrospectively investigate the accuracy of conventional freehand (bedside) hemorrhage drain placement and to prospectively compare the accuracy of augmented/mixed reality-guided (AR) versus frame-based stereotaxy-guided (STX) and freehand drain placement in a phantom model. METHODS: A retrospective, single-center analysis evaluated the accuracy of drain placement in 73 consecutive ICH with a visual rating of postinterventional CT data. In a head phantom with a simulated deep ICH, five neurosurgeons performed four punctures for each technique: STX, AR, and the freehand technique. The Euclidean distance to the target point and the lateral deviation of the achieved trajectory from the planned trajectory at target point level were compared between the three methods. RESULTS: Analysis of the clinical cases revealed an optimal drainage position in only 46/73 (63%). Correction of the drain was necessary in 23/73 cases (32%). In the phantom study, accuracy of AR was significantly higher than the freehand method (P<0.001 for both Euclidean and lateral distances). The Euclidean distance using AR (median 3 mm) was close to that using STX (median 1.95 mm; P=0.023). CONCLUSIONS: We demonstrated that the accuracy of the freehand technique was low and that subsequent position correction was common. In a phantom model, AR drainage placement was significantly more precise than the freehand method. AR has great potential to increase precision of emergency intracranial punctures in a bedside setting.


Assuntos
Realidade Aumentada , Humanos , Estudos Retrospectivos , Punções/métodos , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/cirurgia , Drenagem/métodos
18.
Eur J Anaesthesiol ; 40(2): 121-129, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121289

RESUMO

BACKGROUND: Neuraxial access is necessary for an array of procedures in anaesthesia, interventional pain medicine and neurosurgery. The commonly used anatomical landmark technique is challenging and requires practical experience. OBJECTIVE: We aimed to evaluate the technical feasibility of an augmented reality-guided approach for neuraxial access and tested the hypothesis that its use would improve success as the primary outcome. As secondary outcomes, we measured accuracy and the procedural duration compared with the classical landmark approach. DESIGN: A randomised phantom-based study. SETTING: The three-dimensional image of a thoracolumbar phantom spine model with the surrounding soft tissue was created with a neurosurgical planning workstation and ideal trajectories to the epidural space on the levels T10-L1 were planned using a paramedian approach. Both the three-dimensional holographic image of the spine and the trajectories were transferred to an augmented reality-headset. Four probands (two anaesthesiologists, one neuroradiologist and one stereotactic neurosurgeon) performed 20 attempts, 10 each of either conventional landmark or augmented reality-guided epidural punctures, where anatomical level, side and sequence of modality were all randomised. OUTCOME MEASURES: Accuracy was assessed by measuring Euclidean distance and lateral deviation from the predefined target point. Success of epidural puncture on the first attempt was compared between the conventional and the augmented reality-guided approaches. RESULTS: Success was achieved in 82.5% of the attempts using augmented reality technique, compared with 40% with the conventional approach [ P  = 0.0002, odds ratio (OR) for success: 7.07]. Euclidean distance (6.1 vs. 12 mm, P  < 0.0001) and lateral deviation (3.7 vs. 9.2 mm, P  < 0.0001) were significantly smaller using augmented reality. Augmented reality-guided puncture was significantly faster than with the conventional landmark approach (52.5 vs. 67.5 s, P  = 0.0015). CONCLUSION: Augmented reality guidance significantly improved the accuracy and success in an experimental phantom model of epidural puncture. With further technical development, augmented reality guidance might prove helpful in anatomically challenging neuraxial procedures.


Assuntos
Realidade Aumentada , Humanos , Espaço Epidural/diagnóstico por imagem , Imagens de Fantasmas , Punções/métodos
19.
Neurosurg Rev ; 45(4): 2745-2755, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35441994

RESUMO

Defects of the cranial vault often require cosmetic reconstruction with patient-specific implants, particularly in cases of craniofacial involvement. However, fabrication takes time and is expensive; therefore, efforts must be made to develop more rapidly available and more cost-effective alternatives. The current study investigated the feasibility of an augmented reality (AR)-assisted single-step procedure for repairing bony defects involving the facial skeleton and the skull base. In an experimental setting, nine neurosurgeons fabricated AR-assisted and conventionally shaped ("freehand") implants from polymethylmethacrylate (PMMA) on a skull model with a craniofacial bony defect. Deviations of the surface profile in comparison with the original model were quantified by means of volumetry, and the cosmetic results were evaluated using a multicomponent scoring system, each by two blinded neurosurgeons. Handling the AR equipment proved to be quite comfortable. The median volume deviating from the surface profile of the original model was low in the AR-assisted implants (6.40 cm3) and significantly reduced in comparison with the conventionally shaped implants (13.48 cm3). The cosmetic appearance of the AR-assisted implants was rated as very good (median 25.00 out of 30 points) and significantly improved in comparison with the conventionally shaped implants (median 14.75 out of 30 points). Our experiments showed outstanding results regarding the possibilities of AR-assisted procedures for single-step reconstruction of craniofacial defects. Although patient-specific implants still represent the gold standard in esthetic aspects, AR-assisted procedures hold high potential for an immediately and widely available, cost-effective alternative providing excellent cosmetic outcomes.


Assuntos
Realidade Aumentada , Neurocirurgia , Procedimentos de Cirurgia Plástica , Craniotomia/métodos , Humanos , Próteses e Implantes , Procedimentos de Cirurgia Plástica/métodos , Crânio/cirurgia , Base do Crânio/cirurgia
20.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267463

RESUMO

Purpose: Glioblastomas (GBM) and brain metastases are often difficult to differentiate in conventional MRI. Diffusion microstructure imaging (DMI) is a novel MR technique that allows the approximation of the distribution of the intra-axonal compartment, the extra-axonal cellular, and the compartment of interstitial/free water within the white matter. We hypothesize that alterations in the T2 hyperintense areas surrounding contrast-enhancing tumor components may be used to differentiate GBM from metastases. Methods: DMI was performed in 19 patients with glioblastomas and 17 with metastatic lesions. DMI metrics were obtained from the T2 hyperintense areas surrounding contrast-enhancing tumor components. Resected brain tissue was assessed in six patients in each group for features of an edema pattern and tumor infiltration in the perilesional interstitium. Results: Within the perimetastatic T2 hyperintensities, we observed a significant increase in free water (p < 0.001) and a decrease in both the intra-axonal (p = 0.006) and extra-axonal compartments (p = 0.024) compared to GBM. Perilesional free water fraction was discriminative regarding the presence of GBM vs. metastasis with a ROC AUC of 0.824. Histologically, features of perilesional edema were present in all assessed metastases and absent or marginal in GBM. Conclusion: Perilesional T2 hyperintensities in brain metastases and GBM differ significantly in DMI-values. The increased free water fraction in brain metastases suits the histopathologically based hypothesis of perimetastatic vasogenic edema, whereas in glioblastomas there is additional tumor infiltration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA