Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19548-19559, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708262

RESUMO

Carbon dioxide (CO2) is a detrimental greenhouse gas and is the main contributor to global warming. In addressing this environmental challenge, a promising approach emerges through the utilization of deep eutectic solvents (DESs) as an ecofriendly and sustainable medium for effective CO2 capture. Chemically reactive DESs, which form chemical bonds with the CO2, are superior to nonreactive, physically based DESs for CO2 absorption. However, there are no accurate computational models that provide accurate predictions of the CO2 solubility in chemically reactive DESs. Here, we develop machine learning (ML) models to predict the solubility of CO2 in chemically reactive DESs. As training data, we collected 214 data points for the CO2 solubility in 149 different chemically reactive DESs at different temperatures, pressures, and DES molar ratios from published work. The physics-driven input features for the ML models include σ-profile descriptors that quantify the relative probability of a molecular surface segment having a certain screening charge density and were calculated with the first-principle quantum chemical method COSMO-RS. We show here that, although COSMO-RS does not explicitly calculate chemical reaction profiles, the COSMO-RS-derived σ-profile features can be used to predict bond formation. Of the models trained, an artificial neural network (ANN) provides the most accurate CO2 solubility prediction with an average absolute relative deviation of 2.94% on the testing sets. Overall, this work provides ML models that can predict CO2 solubility precisely and thus accelerate the design and application of chemically reactive DESs.

2.
J Chem Theory Comput ; 20(9): 3911-3926, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38387055

RESUMO

Deep eutectic solvents (DESs) are emerging as environmentally friendly designer solvents for mass transport and heat transfer processes in industrial applications; however, the lack of accurate tools to predict and thus control their viscosities under both a range of environmental factors and formulations hinders their general application. While DESs may serve as designer solvents, with nearly unlimited combinations, this unfortunately makes it experimentally infeasible to comprehensively measure the viscosities of all DESs of potential industrial interest. To assist in the design of DESs, we have developed several new machine learning (ML) models that accurately and rapidly predict the viscosities of a diverse group of DESs at different temperatures and molar ratios using, to date, one of the most comprehensive data sets containing the properties of over 670 DESs over a wide range of temperatures (278.15-385.25 K). Three ML models, including support vector regression (SVR), feed forward neural networks (FFNNs), and categorical boosting (CatBoost), were developed to predict DES viscosity as a function of temperature and molar ratio and contrasted with multilinear and two-factor polynomial regression baselines. Quantum chemistry-based, COSMO-RS-derived sigma profile (σ-profile) features were used as inputs for the ML models. The CatBoost model is excellent at externally predicting DES viscosity, as indicated by high R2 (0.99) and low root-mean-square-error (RMSE) and average absolute relative deviations (AARD) (5.22%) values for the testing data sets, and 98% of the data points lie within the 15% of AARD deviations. Furthermore, SHapley additive explanation (SHAP) analysis was employed to interpret the ML results and rationalize the viscosity predictions. The result is an ML approach that accurately predicts viscosity and will aid in accelerating the design of appropriate DESs for industrial applications.

3.
Drug Discov Today ; 29(3): 103891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246414

RESUMO

Each of the ∼20,000 proteins in the human proteome is a potential target for compounds that bind to it and modify its function. The 3D structures of most of these proteins are now available. Here, we discuss the prospects for using these structures to perform proteome-wide virtual HTS (VHTS). We compare physics-based (docking) and AI VHTS approaches, some of which are now being applied with large databases of compounds to thousands of targets. Although preliminary proteome-wide screens are now within our grasp, further methodological developments are expected to improve the accuracy of the results.


Assuntos
Proteoma , Humanos , Proteoma/metabolismo
4.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260016

RESUMO

Knowledge of the physical properties of ionic liquids (ILs), such as the surface tension and speed of sound, is important for both industrial and research applications. Unfortunately, technical challenges and costs limit exhaustive experimental screening efforts of ILs for these critical properties. Previous work has demonstrated that the use of quantum-mechanics-based thermochemical property prediction tools, such as the conductor-like screening model for real solvents, when combined with machine learning (ML) approaches, may provide an alternative pathway to guide the rapid screening and design of ILs for desired physiochemical properties. However, the question of which machine-learning approaches are most appropriate remains. In the present study, we examine how different ML architectures, ranging from tree-based approaches to feed-forward artificial neural networks, perform in generating nonlinear multivariate quantitative structure-property relationship models for the prediction of the temperature- and pressure-dependent surface tension of and speed of sound in ILs over a wide range of surface tensions (16.9-76.2 mN/m) and speeds of sound (1009.7-1992 m/s). The ML models are further interrogated using the powerful interpretation method, shapley additive explanations. We find that several different ML models provide high accuracy, according to traditional statistical metrics. The decision tree-based approaches appear to be the most accurate and precise, with extreme gradient-boosting trees and gradient-boosting trees being the best performers. However, our results also indicate that the promise of using machine-learning to gain deep insights into the underlying physics driving structure-property relationships in ILs may still be somewhat premature.

5.
Comput Struct Biotechnol J ; 21: 1122-1139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789259

RESUMO

For plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria. The identification and characterization of LysM-RLKs in candidate bioenergy crops including Populus are limited compared to other model plant species, thus inhibiting our ability to both understand and engineer microbe-mediated gains in plant productivity. As such, we performed a sequence analysis of LysM-RLKs in the Populus genome and predicted their function based on phylogenetic analysis with known LysM-RLKs. Then, using predictive models, molecular dynamics simulations, and comparative structural analysis with previously characterized CO and LCO plant receptors, we identified probable ligand-binding sites in Populus LysM-RLKs. Using several machine learning models, we predicted remarkably consistent binding affinity rankings of Populus proteins to CO. In addition, we used a modified Random Walk with Restart network-topology based approach to identify a subset of Populus LysM-RLKs that are functionally related and propose a corresponding signal transduction cascade. Our findings provide the first look into the role of LysM-RLKs in Populus-microbe interactions and establish a crucial jumping-off point for future research efforts to understand specificity and redundancy in microbial perception mechanisms.

6.
Nat Commun ; 13(1): 5285, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075915

RESUMO

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like protease (3CLpro) can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.50 Å resolution crystal structure of 3CLpro C145S bound to NEMO226-234 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro-NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for, in the pathology of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/química , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeo Hidrolases , Proteínas
7.
bioRxiv ; 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34816264

RESUMO

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like (3CLpro) protease can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.14 Å resolution crystal structure of 3CLpro C145S bound to NEMO 226-235 reveals subsites that tolerate a range of viral and host substrates through main chain hydrogen bonds while also enforcing specificity using side chain hydrogen bonds and hydrophobic contacts. Machine learning- and physics-based computational methods predict that variation in key binding residues of 3CLpro- NEMO helps explain the high fitness of SARS-CoV-2 in humans. We posit that cleavage of NEMO is an important piece of information to be accounted for in the pathology of COVID-19.

8.
J Comput Aided Mol Des ; 35(11): 1095-1123, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34708263

RESUMO

The advent of computational drug discovery holds the promise of significantly reducing the effort of experimentalists, along with monetary cost. More generally, predicting the binding of small organic molecules to biological macromolecules has far-reaching implications for a range of problems, including metabolomics. However, problems such as predicting the bound structure of a protein-ligand complex along with its affinity have proven to be an enormous challenge. In recent years, machine learning-based methods have proven to be more accurate than older methods, many based on simple linear regression. Nonetheless, there remains room for improvement, as these methods are often trained on a small set of features, with a single functional form for any given physical effect, and often with little mention of the rationale behind choosing one functional form over another. Moreover, it is not entirely clear why one machine learning method is favored over another. In this work, we endeavor to undertake a comprehensive effort towards developing high-accuracy, machine-learned scoring functions, systematically investigating the effects of machine learning method and choice of features, and, when possible, providing insights into the relevant physics using methods that assess feature importance. Here, we show synergism among disparate features, yielding adjusted R2 with experimental binding affinities of up to 0.871 on an independent test set and enrichment for native bound structures of up to 0.913. When purely physical terms that model enthalpic and entropic effects are used in the training, we use feature importance assessments to probe the relevant physics and hopefully guide future investigators working on this and other computational chemistry problems.


Assuntos
Descoberta de Drogas/métodos , Aprendizado de Máquina , Proteínas/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Termodinâmica
9.
Annu Rev Phys Chem ; 72: 641-666, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33636998

RESUMO

Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N2, and BF bound to a [Ru(II)(NH3)5]2 + moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential.

10.
Mol Biol Evol ; 38(2): 702-715, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32941612

RESUMO

Despite SARS-CoV and SARS-CoV-2 being equipped with highly similar protein arsenals, the corresponding zoonoses have spread among humans at extremely different rates. The specific characteristics of these viruses that led to such distinct outcomes remain unclear. Here, we apply proteome-wide comparative structural analysis aiming to identify the unique molecular elements in the SARS-CoV-2 proteome that may explain the differing consequences. By combining protein modeling and molecular dynamics simulations, we suggest nonconservative substitutions in functional regions of the spike glycoprotein (S), nsp1, and nsp3 that are contributing to differences in virulence. Particularly, we explain why the substitutions at the receptor-binding domain of S affect the structure-dynamics behavior in complexes with putative host receptors. Conservation of functional protein regions within the two taxa is also noteworthy. We suggest that the highly conserved main protease, nsp5, of SARS-CoV and SARS-CoV-2 is part of their mechanism of circumventing the host interferon antiviral response. Overall, most substitutions occur on the protein surfaces and may be modulating their antigenic properties and interactions with other macromolecules. Our results imply that the striking difference in the pervasiveness of SARS-CoV-2 and SARS-CoV among humans seems to significantly derive from molecular features that modulate the efficiency of viral particles in entering the host cells and blocking the host immune response.


Assuntos
Simulação de Dinâmica Molecular , Proteômica , SARS-CoV-2/química , SARS-CoV-2/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas Virais/química , Animais , Humanos , Domínios Proteicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/metabolismo , Especificidade da Espécie , Proteínas Virais/metabolismo
11.
Biochim Biophys Acta Gen Subj ; 1864(4): 129535, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31954798

RESUMO

Selecting peptides that bind strongly to the major histocompatibility complex (MHC) for inclusion in a vaccine has therapeutic potential for infections and tumors. Machine learning models trained on sequence data exist for peptide:MHC (p:MHC) binding predictions. Here, we train support vector machine classifier (SVMC) models on physicochemical sequence-based and structure-based descriptor sets to predict peptide binding to a well-studied model mouse MHC I allele, H-2Db. Recursive feature elimination and two-way forward feature selection were also performed. Although low on sensitivity compared to the current state-of-the-art algorithms, models based on physicochemical descriptor sets achieve specificity and precision comparable to the most popular sequence-based algorithms. The best-performing model is a hybrid descriptor set containing both sequence-based and structure-based descriptors. Interestingly, close to half of the physicochemical sequence-based descriptors remaining in the hybrid model were properties of the anchor positions, residues 5 and 9 in the peptide sequence. In contrast, residues flanking position 5 make little to no residue-specific contribution to the binding affinity prediction. The results suggest that machine-learned models incorporating both sequence-based descriptors and structural data may provide information on specific physicochemical properties determining binding affinities.


Assuntos
Antígenos de Histocompatibilidade Classe I/química , Aprendizado de Máquina , Peptídeos/química , Algoritmos , Alelos , Sequência de Aminoácidos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Ligação Proteica , Conformação Proteica
12.
Nat Commun ; 10(1): 5612, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819058

RESUMO

Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown. Here we present the NMR solution structure of hMYDGF, which consists of a short α-helix and ten ß-strands distributed in three ß-sheets. Conserved residues map to the unstructured ERS, loops on the face opposite the ERS, and the surface of a cavity underneath the conserved loops. The only protein or portion of a protein known to have a similar fold is the base domain of VNN1. We suggest, in analogy to the tethering of the VNN1 nitrilase domain to the plasma membrane via its base domain, that MYDGF complexed to the KDEL receptor binds cargo via its conserved residues for transport to the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Interleucinas/química , Sequência de Aminoácidos , Cálcio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Interleucinas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Filogenia , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Homologia Estrutural de Proteína
13.
Front Mol Biosci ; 6: 64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475155

RESUMO

Intrinsically disordered proteins (IDPs) and proteins with intrinsically disordered regions (IDRs) play important roles in many aspects of normal cell physiology, such as signal transduction and transcription, as well as pathological states, including Alzheimer's, Parkinson's, and Huntington's disease. Unlike their globular counterparts that are defined by a few structures and free energy minima, IDP/IDR comprise a large ensemble of rapidly interconverting structures and a corresponding free energy landscape characterized by multiple minima. This aspect has precluded the use of structural biological techniques, such as X-ray crystallography and nuclear magnetic resonance (NMR) for resolving their structures. Instead, low-resolution techniques, such as small-angle X-ray or neutron scattering (SAXS/SANS), have become a mainstay in characterizing coarse features of the ensemble of structures. These are typically complemented with NMR data if possible or computational techniques, such as atomistic molecular dynamics, to further resolve the underlying ensemble of structures. However, over the past 10-15 years, it has become evident that the classical, pairwise-additive force fields that have enjoyed a high degree of success for globular proteins have been somewhat limited in modeling IDP/IDR structures that agree with experiment. There has thus been a significant effort to rehabilitate these models to obtain better agreement with experiment, typically done by optimizing parameters in a piecewise fashion. In this work, we take a different approach by optimizing a set of force field parameters simultaneously, using machine learning to adapt force field parameters to experimental SAXS scattering profiles. We demonstrate our approach in modeling three biologically IDP ensembles based on experimental SAXS profiles and show that our optimization approach significantly improve force field parameters that generate ensembles in better agreement with experiment.

14.
J Chem Theory Comput ; 14(12): 6722-6733, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30428257

RESUMO

In this work, we have developed an anisotropic polarizable model for the AMOEBA force field that is derived from electrostatic fitting on a gas phase water molecule as the primary approach to improve the many-body polarization model. We validate our approach using small to large water cluster benchmark data sets and ambient liquid water properties and through comparisons to a variational energy decomposition analysis breakdown of molecular interactions for water and water-ion trimer systems. We find that the accounting of anisotropy polarization for a single water molecule demonstrably improves the description of the many-body polarization energy in all cases. This study provides a proof of principle for extending our protocol for developing a general purpose anisotropic polarizable force field for other biological and material functional groups to better describe complex and asymmetric environments for which accurate polarization models are most needed.


Assuntos
Simulação de Dinâmica Molecular , Água/química , Anisotropia , Conformação Molecular , Eletricidade Estática , Termodinâmica
15.
J Chem Phys ; 147(16): 161721, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096520

RESUMO

In this work, we evaluate the accuracy of the classical AMOEBA model for representing many-body interactions, such as polarization, charge transfer, and Pauli repulsion and dispersion, through comparison against an energy decomposition method based on absolutely localized molecular orbitals (ALMO-EDA) for the water trimer and a variety of ion-water systems. When the 2- and 3-body contributions according to the many-body expansion are analyzed for the ion-water trimer systems examined here, the 3-body contributions to Pauli repulsion and dispersion are found to be negligible under ALMO-EDA, thereby supporting the validity of the pairwise-additive approximation in AMOEBA's 14-7 van der Waals term. However AMOEBA shows imperfect cancellation of errors for the missing effects of charge transfer and incorrectness in the distance dependence for polarization when compared with the corresponding ALMO-EDA terms. We trace the larger 2-body followed by 3-body polarization errors to the Thole damping scheme used in AMOEBA, and although the width parameter in Thole damping can be changed to improve agreement with the ALMO-EDA polarization for points about equilibrium, the correct profile of polarization as a function of intermolecular distance cannot be reproduced. The results suggest that there is a need for re-examining the damping and polarization model used in the AMOEBA force field and provide further insights into the formulations of polarizable force fields in general.

16.
J Chem Theory Comput ; 12(11): 5422-5437, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27709939

RESUMO

AMOEBA is a molecular mechanics force field that addresses some of the shortcomings of a fixed partial charge model, by including permanent atomic point multipoles through quadrupoles, as well as many-body polarization through the use of point inducible dipoles. In this work, we investigate how well AMOEBA formulates its non-bonded interactions, and how it implicitly incorporates quantum mechanical effects such as charge penetration (CP) and charge transfer (CT), for water-water and water-ion interactions. We find that AMOEBA's total interaction energies, as a function of distance and over angular scans for the water dimer and for a range of water-monovalent cations, agree well with an advanced density functional theory (DFT) model, whereas the water-halides and water-divalent cations show significant disagreement with the DFT result, especially in the compressed region when the two fragments overlap. We use a second-generation energy decomposition analysis (EDA) scheme based on absolutely localized molecular orbitals (ALMOs) to show that in the best cases AMOEBA relies on cancellation of errors by softening of the van der Waals (vdW) wall to balance permanent electrostatics that are too unfavorable, thereby compensating for the missing CP effect. CT, as another important stabilizing effect not explicitly taken into account in AMOEBA, is also found to be incorporated by the softened vdW interaction. For the water-halides and water-divalent cations, this compensatory approach is not as well executed by AMOEBA over all distances and angles, wherein permanent electrostatics remains too unfavorable and polarization is overdamped in the former while overestimated in the latter. We conclude that the DFT-based EDA approach can help refine a next-generation AMOEBA model that either realizes a better cancellation of errors for problematic cases like those illustrated here, or serves to guide the parametrization of explicit functional forms for short-range contributions from CP and/or CT.

17.
J Phys Chem B ; 120(37): 9811-32, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27513316

RESUMO

Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.


Assuntos
Algoritmos , Gráficos por Computador , Simulação de Dinâmica Molecular , Teoria Quântica , Software , Eletricidade Estática , Propriedades de Superfície
18.
J Chem Theory Comput ; 12(8): 3884-93, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27405002

RESUMO

We analyze convergence of energies and forces for the AMOEBA classical polarizable model when evaluated as a many-body expansion (MBE) against the corresponding N-body parent potential in the context of a condensed-phase water simulation. This is in contrast to most MBE formulations based on quantum mechanics, which focus only on convergence of energies for gas-phase clusters. Using a single water molecule as a definition of a body, we find that truncation of the MBE at third order, 3-AMOEBA, captures direct polarization exactly and yields apparent good convergence of the mutual polarization energy. However, it renders large errors in the magnitude of polarization forces and requires at least fourth-order terms in the MBE to converge toward the parent potential gradient values. We can improve the convergence of polarization forces for 3-AMOEBA by embedding the polarization response of dimers and trimers within a complete representation of the fixed electrostatics of the entire system. We show that the electrostatic embedding formalism helps identify the specific configurations involving linear hydrogen-bonding arrangements that are poorly convergent at the 3-body level. By extending the definition of a body to be a large water cluster, we can reduce errors in forces to yield an approximate polarization model that is up to 10 times faster than the parent potential. The 3-AMOEBA model offers new ways to investigate how the properties of bulk water depend on the degree of connectivity in the liquid.

19.
J Mol Biol ; 428(4): 709-719, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26854760

RESUMO

Many proteins have small-molecule binding pockets that are not easily detectable in the ligand-free structures. These cryptic sites require a conformational change to become apparent; a cryptic site can therefore be defined as a site that forms a pocket in a holo structure, but not in the apo structure. Because many proteins appear to lack druggable pockets, understanding and accurately identifying cryptic sites could expand the set of drug targets. Previously, cryptic sites were identified experimentally by fragment-based ligand discovery and computationally by long molecular dynamics simulations and fragment docking. Here, we begin by constructing a set of structurally defined apo-holo pairs with cryptic sites. Next, we comprehensively characterize the cryptic sites in terms of their sequence, structure, and dynamics attributes. We find that cryptic sites tend to be as conserved in evolution as traditional binding pockets but are less hydrophobic and more flexible. Relying on this characterization, we use machine learning to predict cryptic sites with relatively high accuracy (for our benchmark, the true positive and false positive rates are 73% and 29%, respectively). We then predict cryptic sites in the entire structurally characterized human proteome (11,201 structures, covering 23% of all residues in the proteome). CryptoSite increases the size of the potentially "druggable" human proteome from ~40% to ~78% of disease-associated proteins. Finally, to demonstrate the utility of our approach in practice, we experimentally validate a cryptic site in protein tyrosine phosphatase 1B using a covalent ligand and NMR spectroscopy. The CryptoSite Web server is available at http://salilab.org/cryptosite.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Proteoma/análise , Sítios de Ligação , Humanos , Aprendizado de Máquina , Conformação Proteica
20.
J Chem Phys ; 143(17): 174104, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26547155

RESUMO

We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...