Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 10(12): e1001444, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23239939

RESUMO

Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA) polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC). Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures.


Assuntos
Divisão Celular , Eucariotos/metabolismo , Flagelos/metabolismo , Parasitos/citologia , Toxoplasma/citologia , Animais , Polaridade Celular , Centrossomo/metabolismo , Flagelos/ultraestrutura , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Modelos Biológicos , Parasitos/ultraestrutura , Proteínas de Protozoários/metabolismo , Toxoplasma/ultraestrutura
2.
PLoS Pathog ; 7(12): e1002392, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22144892

RESUMO

Parasites of the phylum Apicomplexa cause diseases that impact global health and economy. These unicellular eukaryotes possess a relict plastid, the apicoplast, which is an essential organelle and a validated drug target. However, much of its biology remains poorly understood, in particular its elaborate compartmentalization: four membranes defining four different spaces. Only a small number of organellar proteins have been identified in particular few proteins are known for non-luminal apicoplast compartments. We hypothesized that enlarging the catalogue of apicoplast proteins will contribute toward identifying new organellar functions and expand the realm of targets beyond a limited set of characterized pathways. We developed a bioinformatic screen based on mRNA abundance over the cell cycle and on phyletic distribution. We experimentally assessed 57 genes, and of 30 successful epitope tagged candidates eleven novel apicoplast proteins were identified. Of those, seven appear to target to the lumen of the organelle, and four localize to peripheral compartments. To address their function we then developed a robust system for the construction of conditional mutants via a promoter replacement strategy. We confirm the feasibility of this system by establishing conditional mutants for two selected genes--a luminal and a peripheral apicoplast protein. The latter is particularly intriguing as it encodes a hypothetical protein that is conserved in and unique to Apicomplexan parasites and other related organisms that maintain a red algal endosymbiont. Our studies suggest that this peripheral plastid protein, PPP1, is likely localized to the periplastid compartment. Conditional disruption of PPP1 demonstrated that it is essential for parasite survival. Phenotypic analysis of this mutant is consistent with a role of the PPP1 protein in apicoplast biogenesis, specifically in import of nuclear-encoded proteins into the organelle.


Assuntos
Apicomplexa/genética , Plastídeos/genética , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA de Protozoário/genética , Apicomplexa/metabolismo , Apicomplexa/patogenicidade , Ciclo Celular/fisiologia , Plastídeos/metabolismo , Transporte Proteico/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/biossíntese , RNA de Protozoário/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...