Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 9: 50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257181

RESUMO

Metamaterials are artificial materials made of subwavelength elementary cells that give rise to unexpected wave properties that do not exist naturally. However, these properties are generally achieved due to 3D patterning, which is hardly feasible at short wavelengths in the visible and near-infrared regions targeted by most photonic applications. To overcome this limitation, metasurfaces, which are the 2D counterparts of metamaterials, have emerged as promising platforms that are compatible with planar nanotechnologies and thus mass production, which platforms the properties of a metamaterial into a 2D sheet. In the linear regime, wavefront manipulation for lensing, holography, and polarization control has been achieved recently. Interest in metasurfaces operating in the nonlinear regime has also increased due to the ability of metasurfaces to efficiently convert incident light into harmonic frequencies with unusual polarization properties. However, to date, the nonlinear absorption of metasurfaces has been mostly ignored. Here, we demonstrate that plasmonic metasurfaces behave as saturable absorbers with modulation performances superior to the modulation performance of other 2D materials and exhibit unusual polarimetric nonlinear transfer functions. We quantify the link between saturable absorption, the plasmonic resonances of the unit cell and their distribution in a 2D metasurface, and finally provide a practical implementation by integrating the metasurfaces into a fiber laser cavity operating in pulsed regimes driven by the metasurface properties. As such, this work provides new perspectives on ultrathin nonlinear saturable absorbers for applications where tunable nonlinear transfer functions are needed, such as in ultrafast lasers or neuromorphic circuits.

2.
Opt Express ; 25(8): 9138-9149, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437988

RESUMO

Surface plasmon modes propagating in metal nanowires are conveniently excited by focusing a laser beam on one extremity of the nanowire. We find that the precise positioning of the nanowire inside the focal region drastically influences the excitation efficiency of the different SPP modes sustained by the plasmonic waveguide. We demonstrate a spatially selective excitation of bound and leaky surface plasmon modes with excitation maps that strongly depend on the orientation of the incident linear polarization. We discuss this modal selection by considering the inhomogeneous distribution of the field components inside the focus. Our finding provides a way to discriminate the effective indices of the modes offering thus an increased coupling agility for future nanowire-based plasmonic architectures.

3.
Opt Lett ; 41(19): 4542-4545, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749876

RESUMO

Although epsilon-near-zero (ENZ) metamaterials offer many unconventional ways to play with light, the optical impedance mismatch with surroundings can limit the efficiency of future devices. We report here on the improvement of the transmittance of an ENZ wavefront shaper. In this Letter, we first address the way to enhance the transmittance of a plane wave through a layer of ENZ material, thanks to a numerical optimization approach based on the transfer matrix method. We then transpose the one-dimensional approach to a two-dimensional case where the emission of a dipole is shaped into a plane wave by an ENZ device with a design that optimizes the transmittance. As a result, we demonstrate a transmittance efficiency of 15% that is four orders of magnitude higher than previous devices proposed in the literature for wavefront shaping applications. This Letter aims to pave the way for future efficient ENZ devices by offering new strategies to optimize the transmittance through ENZ materials.

4.
Phys Rev Lett ; 115(19): 197401, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588413

RESUMO

Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that these nonlinear radiations are emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are locally induced by a propagating surface plasmon at the excitation frequency, enabling thereby a polariton-mediated spatial tailoring and design of coherent and incoherent nonlinear responses.

5.
Opt Express ; 14(12): 5335-45, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19516700

RESUMO

The periodic scattering of the surface plasmon modes employed in the waveguide of terahertz quantum cascade lasers is shown to be an efficient method to control the properties of the laser emission. The scatterers are realized as thin slits in the metal and top contact layer carrying the surface plasmon. This technique provides larger coupling strengths than previously reported and can be used in various device implementations. Here the method is applied to realize a distributed feedback resonator without back-facet reflection, to achieve vertical emission of the radiation with second-order gratings, and to increase the facet reflectivity by fabricating passive distributed Bragg reflectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...