Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cytogenet ; 16(1): 1, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600272

RESUMO

Molecular cytogenetic and cytogenomic studies have made a contribution to genetics of epilepsy. However, current genomic research of this devastative condition is generally focused on the molecular genetic aspects (i.e. gene hunting, detecting mutations in known epilepsy-associated genes, searching monogenic causes of epilepsy). Nonetheless, chromosomal abnormalities and copy number variants (CNVs) represent an important part of genetic defects causing epilepsy. Moreover, somatic chromosomal mosaicism and genome/chromosome instability seem to be a possible mechanism for a wide spectrum of epileptic conditions. This idea becomes even more attracting taking into account the potential of molecular neurocytogenetic (neurocytogenomic) studies of the epileptic brain. Unfortunately, analyses of chromosome numbers and structure in the affected brain or epileptogenic brain foci are rarely performed. Therefore, one may conclude that cytogenomic area of genomic epileptology is poorly researched. Accordingly, molecular cytogenetic and cytogenomic studies of the clinical cohorts and molecular neurocytogenetic analyses of the epileptic brain appear to be required. Here, we have performed a theoretical analysis to define the targets of the aforementioned studies and to highlight future directions for molecular cytogenetic and cytogenomic research of epileptic disorders in the widest sense. To succeed, we have formed a consortium, which is planned to perform at least a part of suggested research. Taking into account the nature of the communication, "cytogenomic epileptology" has been introduced to cover the research efforts in this field of medical genomics and epileptology. Additionally, initial results of studying cytogenomic variations in the Russian neurodevelopmental cohort are reviewed with special attention to epilepsy. In total, we have concluded that (i) epilepsy-associated cytogenomic variations require more profound research; (ii) ontological analyses of epilepsy genes affected by chromosomal rearrangements and/or CNVs with unraveling pathways implicating epilepsy-associated genes are beneficial for epileptology; (iii) molecular neurocytogenetic (neurocytogenomic) analysis of postoperative samples are warranted in patients suffering from epileptic disorders.

2.
Mol Cytogenet ; 15(1): 8, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248137

RESUMO

BACKGROUND: Klinefelter syndrome is a common chromosomal (aneuploidy) disorder associated with an extra X chromosome in males. Regardless of numerous studies dedicated to somatic gonosomal mosaicism, Klinefelter syndrome mosaicism (KSM) has not been systematically addressed in clinical cohorts. Here, we report on the evaluation of KSM in a large cohort of boys with neurodevelopmental disorders. Furthermore, these data have been used for an extension of the hypothesis, which we have recently proposed in a report on Turner's syndrome mosaicism in girls with neurodevelopmental disorders. RESULTS: Klinefelter syndrome-associated karyotypes were revealed in 49 (1.1%) of 4535 boys. Twenty one boys (0.5%) were non-mosaic 47,XXY individuals. KSM was found in 28 cases (0.6%) and manifested as mosaic aneuploidy (50,XXXXXY; 49,XXXXY; 48,XXXY; 48,XXYY; 47,XXY; and 45,X were detected in addition to 47,XXY/46,XY) and mosaic supernumerary marker chromosomes derived from chromosome X (ring chromosomes X and rearranged chromosomes X). It is noteworthy that KSM was concomitant with Rett-syndrome-like phenotypes caused by MECP2 mutations in 5 boys (0.1%). CONCLUSION: Our study provides data on the occurrence of KSM in neurodevelopmental disorders among males. Accordingly, it is proposed that KSM may be a possible element of pathogenic cascades in psychiatric and neurodegenerative diseases. These observations allowed us to extend the hypothesis proposed in our previous report on the contribution of somatic gonosomal mosaicism (Turner's syndrome mosaicism) to the etiology of neurodevelopmental disorders. Thus, it seems to be important to monitor KSM (a possible risk factor or a biomarker for adult-onset multifactorial brain diseases) and analysis of neuromarkers for aging in individuals with Klinefelter syndrome. Cases of two or more supernumerary chromosomes X were all associated with KSM. Finally, Rett syndrome-like phenotypes associated with KSM appear to be more common in males with neurodevelopmental disorders than previously recognized.

3.
Cancers (Basel) ; 14(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35326608

RESUMO

Non-small-cell lung cancer (NSCLC), a subtype of lung cancer, remains one of the most common tumors with a high mortality and morbidity rate. Numerous targeted drugs were implemented or are now developed for the treatment of NSCLC. Two genes, HER2 and MET, are among targets for these specific therapeutic agents. Alterations in HER2 and MET could lead to primary or acquired resistance to commonly used anti-EGFR drugs. Using current methods for detecting HER2 and MET amplifications is time and labor-consuming; alternative methods are required for HER2 and MET testing. We developed the first multiplex droplet digital PCR assay for the simultaneous detection of MET and HER2 amplification in NSCLC samples. The suitability of qPCR was assessed for the optimization of multiplex ddPCR. The optimal elongation temperature, reference genes for DNA quantification, and amplicon length were selected. The developed ddPCR was validated on control samples with various DNA concentrations and ratios of MET and HER2 genes. Using ddPCR, 436 EGFR-negative NSCLC samples were analyzed. Among the tested samples, five specimens (1.15%) showed a higher ratio of MET, and six samples (1.38%) showed a higher ratio of HER2. The reported multiplex ddPCR assay could be used for the routine screening of MET and HER2 amplification in NSCLC samples.

4.
Mol Cytogenet ; 14(1): 9, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33573679

RESUMO

BACKGROUND: Turner's syndrome is associated with either monosomy or a wide spectrum of structural rearrangements of chromosome X. Despite the interest in studying (somatic) chromosomal mosaicism, Turner's syndrome mosaicism (TSM) remains to be fully described. This is especially true for the analysis of TSM in clinical cohorts (e.g. cohorts of individuals with neurodevelopmental disorders). Here, we present the results of studying TSM in a large cohort of girls with neurodevelopmental disorders and a hypothesis highlighting the diagnostic and prognostic value. RESULTS: Turner's syndrome-associated karyotypes were revealed in 111 (2.8%) of 4021 girls. Regular Turner's syndrome-associated karyotypes were detected in 35 girls (0.9%). TSM was uncovered in 76 girls (1.9%). TSM manifested as mosaic aneuploidy (45,X/46,XX; 45,X/47,XXX/46,XX; 45,X/47,XXX) affected 47 girls (1.2%). Supernumerary marker chromosomes derived from chromosome X have been identified in 11 girls with TSM (0.3%). Isochromosomes iX(q) was found in 12 cases (0.3%); one case was non-mosaic. TSM associated with ring chromosomes was revealed in 5 girls (0.1%). CONCLUSION: The present cohort study provides data on the involvement of TSM in neurodevelopmental disorders among females. Thus, TSM may be an element of pathogenic cascades in brain diseases (i.e. neurodegenerative and psychiatric disorders). Our data allowed us to propose a hypothesis concerning ontogenetic variability of TSM levels. Accordingly, it appears that molecular cytogenetic monitoring of TSM, which is a likely risk factor/biomarker for adult-onset multifactorial diseases, is required.

5.
Curr Genomics ; 19(3): 163-172, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29606903

RESUMO

BACKGROUND: Postzygotic chromosomal variation in neuronal cells is hypothesized to make a substantial contribution to the etiology and pathogenesis of neuropsychiatric disorders. However, the role of somatic genome instability and mosaic genome variations in common mental illnesses is a matter of conjecture. MATERIALS AND METHODS: To estimate the pathogenic burden of somatic chromosomal mutations, we determined the frequency of mosaic aneuploidy in autopsy brain tissues of subjects with schizophrenia and other psychiatric disorders (intellectual disability comorbid with autism spectrum disorders). Recently, post-mortem brain tissues of subjects with schizophrenia, intellectual disability and unaffected controls were analyzed by Interphase Multicolor FISH (MFISH), Quantitative Fluorescent in situ Hybridization (QFISH) specially designed to register rare mosaic chromosomal mutations such as lowlevel aneuploidy (whole chromosome mosaic deletion/duplication). The low-level mosaic aneuploidy in the diseased brain demonstrated significant 2-3-fold frequency increase in schizophrenia (p=0.0028) and 4-fold increase in intellectual disability comorbid with autism (p=0.0037) compared to unaffected controls. Strong associations of low-level autosomal/sex chromosome aneuploidy (p=0.001, OR=19.0) and sex chromosome-specific mosaic aneuploidy (p=0.006, OR=9.6) with schizophrenia were revealed. CONCLUSION: Reviewing these data and literature supports the hypothesis suggesting that an association of low-level mosaic aneuploidy with common and, probably, overlapping psychiatric disorders does exist. Accordingly, we propose a pathway for common neuropsychiatric disorders involving increased burden of rare de novo somatic chromosomal mutations manifesting as low-level mosaic aneuploidy mediating local and general brain dysfunction.

6.
Mol Diagn Ther ; 20(4): 401-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259329

RESUMO

INTRODUCTION: This study was aimed to evaluate distribution of epidermal growth factor receptor (EGFR) mutations in a large series of Russian lung cancer (LC) patients. METHODS: 10,607 LC samples were considered for EGFR analysis; EGFR status was successfully determined in 10,426 cases (98.3 %), indicating relatively low failure rate. RESULTS: EGFR mutations (ex19del and L858R) were detected in 1759/8716 (20.2 %) adenocarcinomas, 28/669 (4.2 %) squamous cell carcinomas (SCC) and 8/119 (6.7 %) large cell carcinomas. The occurrence of EGFR mutations in adenocarcinomas gradually increased with age, being attributed mainly to the increment of the L858R frequency in non-smokers (patients aged 18-30 years: 1/27 (3.7 %); 31-40 years: 5/98 (5.1 %); 41-50 years: 18/276 (6.5 %); 51-60 years: 102/944 (10.8 %); 61-70 years: 138/1011 (13.7 %); 71-80 years: 85/496 (17.1 %); 81-100 years: 5/27 (18.5 %); p < 0.0001). The EGFR mutation was detected in 804/2107 (38.2 %) non-smoking women versus 125/806 (15.5 %) non-smoking men (p < 0.0001), while the corresponding figures for smokers were 60/273 (22.0 %) versus 147/2214 (6.6 %) (p < 0.0001). The obtained gender-related data differ from the estimates obtained in Asian studies; they indicate that increased prevalence of EGFR mutations in white females may not be entirely attributed to the low prevalence of smoking, but is likely to be related to gender factors per se. CONCLUSION: Biological causes of distinct age- and gender-related distribution of EGFR mutations in LC deserve further investigation.


Assuntos
Receptores ErbB/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Mutação , Vigilância da População , Adolescente , Adulto , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Federação Russa/epidemiologia , Adulto Jovem
7.
Springerplus ; 4: 616, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26543751

RESUMO

Recent developments in molecular cytogenetics allow the detection of genomic rearrangements at an unprecedented level leading to discoveries of previously unknown chromosomal imbalances (zygotic and post-zygotic/mosaic). These can be accompanied by a different kind of pathological genome variations, i.e. chromosome instability (CIN) manifested as structural chromosomal rearrangements and low-level mosaic aneuploidy. Fortunately, combining whole-genome and single-cell molecular cytogenetic techniques with bioinformatics offers an opportunity to link genomic changes to specific molecular or cellular pathology. High-resolution chromosomal SNP microarray analysis was performed to study the genome of a 15-month-aged boy presented with developmental delay, congenital malformations, feeding problems, deafness, epileptiform activity, and eye pathology. In addition, somatic chromosomal mutations (CIN) were analyzed by fluorescence in situ hybridization (FISH). Interstitial 5p13.3p13.2 duplication was revealed in the index patient. Moreover, CIN manifested almost exclusively as chromosome losses and gains (aneuploidy) was detected. Using bioinformatic analysis of SNP array data and FISH results, CIN association with the genomic imbalance resulted from the duplication was proposed. The duplication was demonstrated to encompass genes implicated in cell cycle, programmed cell death, chromosome segregation and genome stability maintenance pathways as shown by an interactomic analysis. Genotype-phenotype correlations were observed, as well. To the best our knowledge, identical duplications have not been reported in the available literature. Apart from genotype-phenotype correlations, it was possible to propose a link between the duplication and CIN (aneuploidy). This case study demonstrates that combining SNP array genomic analysis, bioinformatics and molecular cytogenetic evaluation of somatic genome variations is able to provide a view on cellular and molecular pathology in a personalized manner. Therefore, one can speculate that similar approaches targeting both interindividual and intercellular genomic variations could be useful for a better understanding of disease mechanisms and disease-related biological processes.

8.
Mol Cytogenet ; 6(1): 53, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24283533

RESUMO

BACKGROUND: Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative genomic hybridization (CGH) and a bioinformatic approach. RESULTS: Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients), who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case) associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion size, all the cases exhibited mild phenotypes. CONCLUSIONS: Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2 mutations are caused by Xq28 microdeletions. Furthermore, Xq28 (MECP2) deletions are likely to cause mild subtypes of the disease, which can manifest as both classical and atypical RTT.

9.
Schizophr Res ; 98(1-3): 139-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17889509

RESUMO

OBJECTIVE: Genetic instability manifested as loss or gain of whole chromosomes (aneuploidy) is a newly described feature of the human brain. Aneuploidy in the brain was hypothesized to be involved in schizophrenia pathogenesis. To gain further insights into the relationship between aneuploidy in the brain and schizophrenia pathogenesis, a molecular-cytogenetic study of chromosome 1 aneuploidy was performed. METHODS: Interphase multiprobe fluorescence in situ hybridization (FISH) with quantitative FISH (QFISH) and interphase chromosome-specific multicolor banding (ICS-MCB) were used to define aneuploidy rate in 12 unaffected and 12 schizophrenia brains. RESULTS: In the unaffected brain (n=12; 22,794 cells analyzed), average frequencies of stochastic chromosome 1 loss and gain were 0.3% (95%CI 0.2-0.4%) and 0.3% (95%CI 0.2-0.4%), respectively. The threshold level for stochastic chromosome gain and loss (the mean+3SD) in the normal brain was 0.7%. Average rate of aneuploidy in the schizophrenia brain (n=12; 28,482 cells analyzed) was 0.9% (95%CI 0.3-1.5%) for chromosome 1 loss and 0.9% (95%CI 0.2-1.7%) for chromosome 1 gain. Significantly increased level of mosaic aneuploidy involving chromosome 1 was revealed in two schizophrenia brains (3.6% and 4.7% of cells with chromosome 1 loss and gain, respectively). Stochastic aneuploidy rate for chromosome 1 in the schizophrenia brain without two outliers (n=10) reached 0.6% (95%CI 0.3-0.9%) for loss and 0.5% (0.2-0.9%) for gain and was higher than in controls (P=0.005 and P=0.001, respectively). CONCLUSIONS: Our findings support the hypothesis suggesting that subtle genomic imbalances manifesting as low-level mosaic aneuploidy may contribute to schizophrenia pathogenesis.


Assuntos
Aneuploidia , Encéfalo/metabolismo , Cromossomos Humanos Par 1/genética , Mosaicismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Idade de Início , Cromossomos Humanos Par 1/metabolismo , Grupos Controle , Feminino , Instabilidade Genômica/genética , Humanos , Hibridização in Situ Fluorescente/métodos , Masculino , Pessoa de Meia-Idade , Processos Estocásticos
10.
PLoS One ; 2(6): e558, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17593959

RESUMO

BACKGROUND: Understanding the mechanisms underlying generation of neuronal variability and complexity remains the central challenge for neuroscience. Structural variation in the neuronal genome is likely to be one important mechanism for neuronal diversity and brain diseases. Large-scale genomic variations due to loss or gain of whole chromosomes (aneuploidy) have been described in cells of the normal and diseased human brain, which are generated from neural stem cells during intrauterine period of life. However, the incidence of aneuploidy in the developing human brain and its impact on the brain development and function are obscure. METHODOLOGY/PRINCIPAL FINDINGS: To address genomic variation during development we surveyed aneuploidy/polyploidy in the human fetal tissues by advanced molecular-cytogenetic techniques at the single-cell level. Here we show that the human developing brain has mosaic nature, being composed of euploid and aneuploid neural cells. Studying over 600,000 neural cells, we have determined the average aneuploidy frequency as 1.25-1.45% per chromosome, with the overall percentage of aneuploidy tending to approach 30-35%. Furthermore, we found that mosaic aneuploidy can be exclusively confined to the brain. CONCLUSIONS/SIGNIFICANCE: Our data indicates aneuploidization to be an additional pathological mechanism for neuronal genome diversification. These findings highlight the involvement of aneuploidy in the human brain development and suggest an unexpected link between developmental chromosomal instability, intercellural/intertissular genome diversity and human brain diseases.


Assuntos
Aneuploidia , Encéfalo/embriologia , Encéfalo/ultraestrutura , Bandeamento Cromossômico , Feto , Humanos , Hibridização in Situ Fluorescente , Mosaicismo , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...