Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(39): 8064-8074, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36111601

RESUMO

This work aimed to develop biocompatible non-leachable antimicrobial polymers without ionic structures. A series of nonionic hyperbranched polymers (HBPs) with an isatin-based backbone and phenolic terminal units were synthesized and characterized. The molecular structures and thermal properties of the obtained HBPs were characterized by SEC, NMR, FTIR, TGA and DSC analyses. Disk diffusion assay revealed significant antibacterial activity of the obtained phenolic HBPs against nine different pathogenic bacteria. The presence of a methoxy or long alkyl group close to the phenolic unit enhanced the antibacterial effect against certain Gram positive and negative bacteria. The obtained nonionic HBPs were blended in polyester poly(hexamethylene terephthalate) films, which showed no noticeable leakage after being immersed in water for 5 days. Finally, these HBPs showed no cytotoxicity effect to MG-63 osteoblast-like human cells according to MTT analysis, and negligible hemolytic effect.


Assuntos
Isatina , Polímeros , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Poliésteres/química , Polímeros/química , Polímeros/farmacologia , Água
2.
Biomacromolecules ; 22(5): 2256-2271, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33900740

RESUMO

Most macromolecular antimicrobials are ionic and thus lack miscibility/compatibility with nonionic substrate materials. In this context, nonionic hyperbranched polyesters (HBPs) with indole or isatin functionality were rationally designed, synthesized, and characterized. Antimicrobial disk diffusion assay indicated that these HBPs showed significant antibacterial activity against 8 human pathogenic bacteria compared to small molecules with indole or isatin groups. According to DSC measurements, up to 20% indole-based HBP is miscible with biodegradable polyesters (polyhydroxybutyrate or polycaprolactone), which can be attributed to the favorable hydrogen bonding between the N-H moiety of indole and the C═O of polyesters. HBPs with isatin or methylindole were completely immiscible with the same matrices. None of the HBPs leaked out from plastic matrix after being immersed in water for 5 days. The incorporation of indole into HBPs as well as small molecules facilitated their enzymatic degradation with PETase from Ideonella sakaiensis, while isatin had a complex impact. Molecular docking simulations of monomeric molecules with PETase revealed different orientations of the molecules at the active site due to the presence of indole or isatin groups, which could be related to the observed different enzymatic degradation behavior. Finally, biocompatibility analysis with a mammalian cell line showed the negligible cytotoxic effect of the fabricated HBPs.


Assuntos
Isatina , Animais , Antibacterianos , Burkholderiales , Humanos , Indóis , Isatina/farmacologia , Simulação de Acoplamento Molecular , Poliésteres , Polímeros
3.
Biomacromolecules ; 18(10): 3439-3446, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28841299

RESUMO

The aim of this study was to develop simple cellulose nanocomposites that can interfere with the quorum-sensing (QS)-regulated physiological process of bacteria, which will provide a sustainable and inexpensive solution to the serious challenges caused by bacterial infections in various products like food packaging or biomedical materials. Three cellulose nanocomposites with 1-5 w% octadecylamine-modified montmorillonite (ODA-MMT) were prepared by regeneration of cellulose from ionic liquid solutions in the presence of ODA-MMT suspension. Structural characterization of the nanocomposites showed that the ODA-MMT can be exfoliated or intercalated, depending on the load level of the nanofiller. Thermal gravimetric analysis showed that the incorporation of ODA-MMT nanofiller can improve the thermal stability of the nanocomposites compared with regenerated cellulose. Evaluation of the anti-QS effect against a pigment-producing bacteria C. violaceum CV026 by disc diffusion assay and flask incubation assay revealed that the QS-regulated violacein pigment production was significantly inhibited by the cellulose nanocomposites without interfering the bacterial vitality. Interestingly, the nanocomposite with the lowest load of ODA-MMT exhibited the most significant anti-QS effect, which may be correlated to the exfoliation of nanofillers. To our knowledge, this is the first report on the anti-QS effect of cellulose nanocomposites without the addition of any small molecular agents. Such inexpensive and nontoxic biomaterials will thus have great potential in the development of new cellulosic materials that can effectively prevent the formation of harmful biofilms.


Assuntos
Antibacterianos/síntese química , Bentonita/química , Celulose/química , Nanocompostos/química , Percepção de Quorum , Aminas/química , Antibacterianos/química , Antibacterianos/farmacologia , Chromobacterium/efeitos dos fármacos , Líquidos Iônicos/química
4.
Carbohydr Polym ; 157: 1913-1921, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987911

RESUMO

A new class of soluble cellulose-grafted hyperbranched polymers has been synthesized by a facile "hypergrafting" reaction using bis(2-chloroethyl)amine and soluble cellulose tosylates. The molecular structures of the obtained new materials were characterized by 13C NMR, FTIR spectroscopy, and elemental analysis. The degree of substitution of the hyperbranched cellulose derivatives ranges between 0.13-0.53. The new cellulose-based materials were soluble in various polar aprotic organic solvents. The thermal properties of the new cellulose materials were investigated by thermal gravimetric analysis. Antibacterial activity of the new cellulose derivatives was evaluated by diffusion disk tests against various gram negative and positive bacteria. Our results suggested that the obtained natural cellulosic materials can act as effective polymeric biocides, and may have great potential in various antimicrobial materials applications.


Assuntos
Antibacterianos/química , Celulose/química , Polímeros , Bactérias/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...