Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Atherosclerosis ; 141(2): 227-35, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9862171

RESUMO

This study investigates the suitability of the trimeric apolipoprotein (apo)AI(145-183) peptide that we recently described, to serve as a model to probe the relationship between apoAI structure and function. Three copies of the apoAI(145-183) unit, composed each of two amphipathic alpha-helical segments, were branched onto a covalent core matrix and the construct was recombined with phospholipids. A similar construct was made with the apoAI(102-140) peptide and used as a comparison with dimyristoylglycerophosphocholine (DMPC)-apoAI complexes. The DMPC-trimeric-apoAI(145-183) complexes had similar immunological reactivity with monoclonal antibodies directed against the 149-186 apoAI sequence (A44), suggesting that the A44 epitope is exposed similarly in both the synthetic peptide and the native apoAI complexes. The complexes generated with the trimeric-apoAI(145-183) bind specifically to HeLa cells with comparable affinity to the DMPC apoAI complexes; they are a good competitor for binding of apoAI to both HeLa cells and Fu5AH rat hepatoma cells; finally, these complexes promote cholesterol efflux from Fu5AH cells with an efficiency comparable with the apo AI/lipid complexes. To study LCAT activation by the trimeric apo AI(145-183) construct, complexes were prepared with dipalmitoylphosphatidylcholine (DPPC), cholesterol (C) and either the trimeric construct or apoAI. LCAT activation by the trimeric construct was much lower than by apo AI, possibly because the conformation of the trimeric 145-183 peptide in DPPC/C/peptide complexes does not mimic that of apoAI in the corresponding complexes. In comparison, the complexes generated with the multimeric apoAI(102-140) construct had a poor capacity to mimic the physico-chemical and biological properties of apoAI. The apoAI(102-140) construct had low affinity for lipid compared with the (145-183) construct. After association with lipids, it was a poor competitor of DMPC-apoAI complexes for cellular binding and had only limited capacity to promote cholesterol efflux. These results suggest trimeric constructs can serve as an appropriate models for apoAI, enabling further investigations and new experimental approaches to determine the structure-function relationship of apoAI.


Assuntos
Apolipoproteína A-I/metabolismo , Lipoproteínas HDL/metabolismo , Animais , Apolipoproteína A-I/química , Colesterol/metabolismo , Células HeLa , Humanos , Neoplasias Hepáticas Experimentais , Peptídeos/síntese química , Fosfatidilcolina-Esterol O-Aciltransferase/fisiologia , Conformação Proteica , Ratos , Células Tumorais Cultivadas
2.
Biochim Biophys Acta ; 1380(1): 10-20, 1998 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-9545517

RESUMO

Retinol-binding protein (RBP), the plasma transport protein for vitamin A, is primarily synthesized in the rough endoplasmic reticulum of the liver. RBP then passes through the smooth endoplasmic reticulum and into the Golgi apparatus where vesicles form and transport the protein to the cell membrane. When rats were depleted of their vitamin A stores, RBP accumulated in the liver microsomes, particularly in the rough microsomes. To identify the organelle(s) where retinol initially binds to RBP, vitamin A-depleted rats were given an i.v. injection of [3H]retinol suspended in Tween 40. After intervals of 2, 3, 4, 5, 6, 8, 10, 15 and 20 min, liver fractions enriched in rough and smooth microsomes and Golgi apparatus were prepared. The retinol/RBP complex (holoRBP) was detected in the rough microsomes within 3 min post injection. HoloRBP later appeared in the smooth microsomes and Golgi fraction, and then the serum at time intervals consistent with the known secretion rate for RBP. HoloRBP was detected in the rough microsomes at all times after 3 min, whether or not the complex was present in the other subcellular fractions. Thus, the holoRBP complex can form in the rough endoplasmic reticulum of the liver.


Assuntos
Microssomos Hepáticos/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Deficiência de Vitamina A/metabolismo , Vitamina A/metabolismo , Animais , Complexo de Golgi/metabolismo , Cinética , Fígado/metabolismo , Masculino , Pré-Albumina/metabolismo , Ratos , Ratos Wistar , Proteínas Plasmáticas de Ligação ao Retinol , Frações Subcelulares/metabolismo , Vitamina A/administração & dosagem , Deficiência de Vitamina A/tratamento farmacológico
3.
Eur J Biochem ; 239(1): 74-84, 1996 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-8706721

RESUMO

Amphipathic helical repeats are considered as the structural units of numerous apolipoproteins and have been described as being responsible for the interaction of apolipoproteins with phospholipids in high-density lipoproteins (HDL). Furthermore, apolipoproteins, and especially apolipoprotein AI (apoAI), are involved in various biological functions of these circulating particles in plasma. Studies with synthetic peptides corresponding to domains of the apoAI sequence have however shown that short 39-residue fragments do not interact strongly enough with phospholipids to generate particles that correctly mimic the physico-chemical properties of HDL reconstituted with native apoAI [Vanloo, B., Demoor, L., Boutillon, C., Lins, L., Baert, J., Fruchart, J. C., Tartar, A. & Rosseneu, M. (1995) Association of synthetic peptide fragments of human apolipoprotein A-I with phospholipids, J. Lipid Res. 36, 1686-1696.]. Here we show that synthetic branched multimeric peptides, often used as carriers for the design of synthetic vaccines (multiple-antigen peptides), can be used to mimic the physiochemical properties of apoAI in HDL. This type of molecule is obtained by using a small core matrix of Lys residues bearing radially branched synthetic peptides as dendritic arms. We compared the lipid-binding capacities and the structural properties of a linear peptide corresponding to residues 145-183 of apoAI [apoAI-(145-183)-peptide] with those of two multimeric peptides consisting respectively of three [trimeric apoAI-(145-183)] and four copies [tetrameric apoAI-(145-183)] of the selected sequence, branched on a covalent core matrix. This paper provides evidence for the increased abilities of the multimeric peptides to associate with phospholipids compared with the short linear peptides. Moreover, the trimeric apoAI-(145-183) peptide was most efficient in mimicking the physico-chemical and structural properties of native apoAI in reconstituted HDL. As tools adequate to unravel the structure/function relationship of separate apolipoprotein domains are still missing, these multimeric peptides might constitute an alternative approach to linear peptides which are poor mimetics and to protein mutants which are difficult to produce and only provide information about the total sequence.


Assuntos
Apolipoproteína A-I/química , Lipoproteínas HDL/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Eletroforese Capilar , Humanos , Espectrometria de Massas/métodos , Microscopia Eletrônica , Dados de Sequência Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fosfolipídeos/química
4.
J Lipid Res ; 36(8): 1686-96, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7595090

RESUMO

The sequences of the plasma apolipoproteins have a high degree of internal homology as they contain several 22-mer internal repeats. These amphipathic helical repeats are considered as the structural and functional units of this class of proteins. We proposed that the 22-mer repeats of the plasma apolipoproteins consist of 17-mer helical segments separated by extended beta-strands comprising five amino acid residues with a proline in the center of this segment. These beta-strand segments help reverse the orientation of the consecutive helices of apoA-I, A-IV, and E in a discoidal apolipoprotein-phospholipid complex. In order to support this hypothesis, we synthesized apoA-I fragments consisting of, respectively, one putative helix (residues 166-183), one helix plus a beta-strand (residues 161-183), and a pair of helices separated by a beta-strand (residues 145-183). The structural and lipid-binding properties of these peptides were investigated by turbidity, fluorescence, binding studies with unilamellar phospholipid vesicles, electron microscopy, and circular dichroism measurements. Our data show that one single putative helical segment or one helical segment plus one extended beta-strand do not form stable complexes with phospholipids. The addition of a second adjacent helix has no influence on the lipid affinity of the apoA-I 145-183 peptide compared to the shorter segments but substantially improves the stability of the complexes. The helical content of the peptide increases upon lipid association as observed with apoA-I. The complexes generated with the apoA-I 145-183 peptide appear as discoidal particles by negative staining electron microscopy, with heterogeneous sizes ranging between 250 and 450 A. The relative orientation of the peptide and the phospholipid is the same as in a DMPC/apoA-I complex as the helices are oriented parallel to the acyl chains of the phospholipid. However, the stability of these complexes is significantly lower than that of the corresponding DMPC/apoA-I complexes. The transition temperature, fluidity, and cooperativity of the phospholipid bilayer are only weakly affected by the association with the apoA-I 145-183 peptide. These data suggest that a pair of helical peptides linked through a beta-strand associates more tightly with lipids and can form discoidal lipid-peptide complexes, than a single helix. A comparison with the properties of native apoA-I suggests, however, that the cooperativity between pairs of helices in native apoA-I further contributes to strengthen the lipid-protein association.


Assuntos
Apolipoproteína A-I/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Aminoácidos/análise , Apolipoproteína A-I/química , Cromatografia em Gel , Dicroísmo Circular , Polarização de Fluorescência , Humanos , Lipossomos , Nefelometria e Turbidimetria , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...