Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 143: 103756, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39243487

RESUMO

Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polß). Polß-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion. Blocking the proteasome causes oxidative Polß-DPC to accumulate in a ubiquitylated form, and this accumulation is toxic to human cells. In the current study, we investigated the mechanism of Polß-DPC processing in cells exposed to the dL-inducing oxidant 1,10-copper-ortho-phenanthroline. Alanine substitution of either or both of two Polß C-terminal residues, lysine-206 and lysine-244, enhanced the accumulation of mutant Polß-DPC relative to the wild-type protein, and removal of the mutant DPC was diminished. Substitution of the N-terminal lysines 41, 61, and 81 did not affect Polß-DPC processing. For Polß with the C-terminal lysine substitutions, the amount of ubiquitin in the stabilized DPC was lowered by ∼40 % relative to wild-type Polß. Suppression of the HECT domain-containing E3 ubiquitin ligase TRIP12 augmented the formation of oxidative Polß-DPC and prevented Polß-DPC removal in oxidant-treated cells. Consistent with the toxicity of accumulated oxidative Polß-DPC, TRIP12 knockdown increased oxidant-mediated cytotoxicity. Thus, ubiquitylation of lysine-206 and lysine-244 by TRIP12 is necessary for digestion of Polß-DPC by the proteasome as the rapid first steps of DPC repair to prevent their cytotoxic accumulation. Understanding how DPC formed with Polß or other AP lyases are repaired in vivo is an important step in revealing how cells cope with the toxic potential of such adducts.

2.
FEBS J ; 291(13): 2849-2875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38401056

RESUMO

The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker. The mechanism driving APE1 to associate with EVs is unknown, but is of paramount importance in better understanding the biological roles of sAPE1. Because APE1 lacks an endoplasmic reticulum-targeting signal peptide, it can be secreted through an unconventional protein secretion endoplasmic reticulum-Golgi-independent pathway, which includes an endosome-based secretion of intraluminal vesicles, mediated by multivesicular bodies (MVBs). Using HeLa and A549 cell lines, we investigated the role of endosomal sorting complex required for transport protein pathways (either-dependent or -independent) in the constitutive or trichostatin A-induced secretion of sAPE1, by means of manumycin A and GW 4869 treatments. Through an in-depth biochemical analysis of late-endosomes (LEs) and early-endosomes (EEs), we observed that the distribution of APE1 on density gradient corresponded to that of LE-CD63, LE-Rab7, EE-EEA1 and EE-Rab 5. Interestingly, the secretion of sAPE1, induced by cisplatin genotoxic stress, involved an autophagy-based unconventional secretion requiring MVBs. The present study enlightens the central role played by MVBs in the secretion of sAPE1 under various stimuli, and offers new perspectives in understanding the biological relevance of sAPE1 in cancer cells.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Transporte Proteico , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Células HeLa , Endossomos/metabolismo , Células A549 , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Corpos Multivesiculares/metabolismo , Reparo por Excisão , Ácidos Hidroxâmicos
3.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628896

RESUMO

After cellular differentiation, nuclear DNA is no longer replicated, and many of the associated proteins are downregulated accordingly. These include the structure-specific endonucleases Fen1 and DNA2, which are implicated in repairing mitochondrial DNA (mtDNA). Two more such endonucleases, named MGME1 and ExoG, have been discovered in mitochondria. This category of nuclease is required for so-called "long-patch" (multinucleotide) base excision DNA repair (BER), which is necessary to process certain oxidative lesions, prompting the question of how differentiation affects the availability and use of these enzymes in mitochondria. In this study, we demonstrate that Fen1 and DNA2 are indeed strongly downregulated after differentiation of neuronal precursors (Cath.a-differentiated cells) or mouse myotubes, while the expression levels of MGME1 and ExoG showed minimal changes. The total flap excision activity in mitochondrial extracts of these cells was moderately decreased upon differentiation, with MGME1 as the predominant flap endonuclease and ExoG playing a lesser role. Unexpectedly, both differentiated cell types appeared to accumulate less oxidative or alkylation damage in mtDNA than did their proliferating progenitors. Finally, the overall rate of mtDNA repair was not significantly different between proliferating and differentiated cells. Taken together, these results indicate that neuronal cells maintain mtDNA repair upon differentiation, evidently relying on mitochondria-specific enzymes for long-patch BER.


Assuntos
DNA Mitocondrial , Endonucleases Flap , Animais , Camundongos , Endonucleases Flap/genética , Diferenciação Celular , DNA Mitocondrial/genética , Fibras Musculares Esqueléticas , Reparo do DNA , Endonucleases
4.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139891

RESUMO

Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases. Many cancer studies also suggest that Ape1 has potential for prognosis in terms of the protein level or intracellular localization. While homozygous disruption of the Ape1 structural gene APEX1 in mice causes embryonic lethality, and most studies in cell culture indicate that the expression of Ape1 is essential, some recent studies reported the isolation of viable APEX1 knockout cells with only mild phenotypes. It has not been established by what mechanism the Ape1-null cell lines cope with the endogenous DNA damage that the enzyme normally handles. We review the enzymatic and other activities of Ape1 and the recent studies of the properties of the APEX1 knockout lines. The APEX1 deletions in CH12F3 and HEK293 FT provide an opportunity to test for possible off-target effects of Ape1 inhibition. For this work, we tested the Ape1 endonuclease inhibitor Compound 3 and the redox inhibitor APX2009. Our results confirmed that both APEX1 knockout cell lines are modestly more sensitive to killing by an alkylating agent than their Ape1-proficient cells. Surprisingly, the knockout lines showed equal sensitivity to direct killing by either inhibitor, despite the lack of the target protein. Moreover, the CH12F3 APEX1 knockout was even more sensitive to Compound 3 than its APEX1+ counterpart. Thus, it appears that both Compound 3 and APX2009 have off-target effects. In cases where this issue may be important, it is advisable that more specific endpoints than cell survival be tested for establishing mechanism.

5.
DNA Repair (Amst) ; 87: 102773, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31945542

RESUMO

Free radical attack on C1' of deoxyribose forms the oxidized abasic (AP) site 2-deoxyribonolactone (dL). In vitro, dL traps the major base excision DNA repair enzyme DNA polymerase beta (Polß) in covalent DNA-protein crosslinks (DPC) via the enzyme's N-terminal lyase activity acting on 5'-deoxyribose-5-phosphate residues. We previously demonstrated formation of Polß-DPC in cells challenged with oxidants generating significant levels of dL. Proteasome inhibition under 1,10-copper-ortho-phenanthroline (CuOP) treatment significantly increased Polß-DPC accumulation and trapped ubiquitin in the DPC, with Polß accounting for 60-70 % of the total ubiquitin signal. However, the identity of the remaining oxidative ubiquityl-DPC remained unknown. In this report, we surveyed whether additional AP lyases are trapped in oxidative DPC in mammalian cells in culture. Poly(ADP-ribose) polymerase 1 (PARP1), Ku proteins, DNA polymerase λ (Polλ), and the bifunctional 8-oxoguanine DNA glycosylase 1 (OGG1), were all trapped in oxidative DPC in mammalian cells. We also observed significant trapping of Polλ, PARP1, and OGG1 in cells treated with the alkylating agent methylmethane sulfonate (MMS), in addition to dL-inducing agents. Ku proteins, in contrast, followed a pattern of trapping similar to that for Polß: MMS failed to produce Ku-DPC, while treatment with CuOP or (less effectively) H2O2 gave rise to significant Ku-DPC. Unexpectedly, NEIL1 and NEIL3 were trapped following H2O2 treatment, but not detectably in cells exposed to CuOP. The half-life of all the AP lyase-DPC ranged from 15-60 min, consistent with their active repair. Accordingly, CuOP treatment under proteasome inhibition significantly increased the observed levels of DPC in cultured mammalian cells containing PARP1, Ku protein, Polλ, and OGG1 proteins. As seen for Polß, blocking the proteasome led to the accumulation of DPC containing ubiquitin. Thus, the ubiquitin-dependent proteolytic mechanisms that control Polß-DPC removal may also apply to a broad array of oxidative AP lyase-DPC, preventing their toxic accumulation in cells.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Linhagem Celular Tumoral , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Desoxirribose , Humanos , Peróxido de Hidrogênio/metabolismo , Autoantígeno Ku/metabolismo , Oxirredução , Poli(ADP-Ribose) Polimerase-1/metabolismo
6.
DNA Repair (Amst) ; 76: 11-19, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763888

RESUMO

There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or "short-patch" (SP-BER), and "long-patch" BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase ß (Polß) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polß itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polß-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polß in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , Animais , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Uracila/metabolismo
7.
DNA Repair (Amst) ; 73: 129-143, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30509560

RESUMO

Loss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure. The guanine-rich regions of telomeres are hotspots for oxidation forming 8-oxoguanine, a lesion that is handled by the base excision repair (BER) pathway. One key player of this pathway is Ape1, the main human endonuclease processing abasic sites. Recent evidences showed an important role for Ape1 in telomeric physiology, but the molecular details regulating Ape1 enzymatic activities on G4-telomeric sequences are lacking. Through a combination of in vitro assays, we demonstrate that Ape1 can bind and process different G4 structures and that this interaction involves specific acetylatable lysine residues (i.e. K27/31/32/35) present in the unstructured N-terminal sequence of the protein. The cleavage of an abasic site located in a G4 structure by Ape1 depends on the DNA conformation or the position of the lesion and on electrostatic interactions between the protein and the nucleic acids. Moreover, Ape1 mutants mimicking the acetylated protein display increased cleavage activity for abasic sites. We found that nucleophosmin (NPM1), which binds the N-terminal sequence of Ape1, plays a role in modulating telomere length and Ape1 activity at abasic G4 structures. Thus, the Ape1 N-terminal sequence is an important relay site for regulating the enzyme's activity on G4-telomeric sequences, and specific acetylatable lysine residues constitute key regulatory sites of Ape1 enzymatic activity dynamics at telomeres.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Quadruplex G , Lisina/metabolismo , Telômero/química , Telômero/metabolismo , Acetilação , Linhagem Celular Tumoral , Humanos , Nucleofosmina , Concentração Osmolar
8.
Toxics ; 6(3)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986418

RESUMO

There is growing evidence of immunotoxicity related to exposure to toxic trace metals, and an examination of gene expression patterns in peripheral blood samples may provide insights into the potential development of these outcomes. This pilot study aimed to correlate the blood levels of three heavy metals (mercury, cadmium, and lead) with differences in gene expression in 24 participants from the Long Island Study of Seafood Consumption. We measured the peripheral blood mRNA expression of 98 genes that are implicated in stress, toxicity, inflammation, and autoimmunity. We fit multiple linear regression models with multiple testing correction to correlate exposure biomarkers with mRNA abundance. The mean blood Hg in this cohort was 16.1 µg/L, which was nearly three times the Environmental Protection Agency (EPA) reference dose (5.8 µg/L). The levels of the other metals were consistent with those in the general population: the mean Pb was 26.8 µg/L, and the mean Cd was 0.43 µg/L. The expression of three genes was associated with mercury, four were associated with cadmium, and five were associated with lead, although none were significant after multiple testing correction. Little evidence was found to associate metal exposure with mRNA abundance for the tested genes that were associated with stress, toxicity, inflammation, or autoimmunity. Future work should provide a more complete picture of physiological reactions to heavy metal exposure.

9.
Geohealth ; 2(4): 139-148, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32159013

RESUMO

Previous missions to the lunar surface implicated potential dangers of lunar soil. In future explorations, astronauts may spend weeks or months on the Moon, increasing the risk of inhaling lunar dust. In an effort to understand the biological impact of lunar regolith, cell cultures derived from lung or neuronal cells were challenged with lunar soil simulants to assess cell survival and genotoxicity. Lunar soil simulants were capable of causing cell death and DNA damage in neuronal and lung cell lines, and freshly crushed lunar soil simulants were more effective at causing cell death and DNA damage than were simulants as received from the supplier. The ability of the simulants to generate reactive oxygen species in aqueous suspensions was not correlated with their cytotoxic or genotoxic affects. Furthermore, the cytotoxicity was not correlated with the accumulation of detectable DNA lesions. These results determine that lunar soil simulants are, with variable activity, cytotoxic and genotoxic to both neuronal and lung-derived cells in culture.

10.
Sci Rep ; 7(1): 9674, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852018

RESUMO

Ape1 is the major apurinic/apyrimidinic (AP) endonuclease activity in mammalian cells, and a key factor in base-excision repair of DNA. High expression or aberrant subcellular distribution of Ape1 has been detected in many cancer types, correlated with drug response, tumor prognosis, or patient survival. Here we present evidence that Ape1 facilitates BRCA1-mediated homologous recombination repair (HR), while counteracting error-prone non-homologous end joining of DNA double-strand breaks. Furthermore, Ape1, coordinated with checkpoint kinase Chk2, regulates drug response of glioblastoma cells. Suppression of Ape1/Chk2 signaling in glioblastoma cells facilitates alternative means of damage site recruitment of HR proteins as part of a genomic defense system. Through targeting "HR-addicted" temozolomide-resistant glioblastoma cells via a chemical inhibitor of Rad51, we demonstrated that targeting HR is a promising strategy for glioblastoma therapy. Our study uncovers a critical role for Ape1 in DNA repair pathway choice, and provides a mechanistic understanding of DNA repair-supported chemoresistance in glioblastoma cells.


Assuntos
Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Tolerância a Medicamentos , Glioblastoma/patologia , Redes e Vias Metabólicas , Ubiquitina-Proteína Ligases/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Recombinação Homóloga , Humanos
11.
F1000Res ; 6: 279, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28357058

RESUMO

Since the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by in vitro studies. Largely for technical reasons, however, the confirmation of these subpathways in vivo has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.

12.
J Expo Sci Environ Epidemiol ; 27(3): 306-312, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168395

RESUMO

Cadmium is a carcinogenic heavy metal. Urinary levels of cadmium are considered to be an indicator of long-term body burden, as cadmium accumulates in the kidneys and has a half-life of at least 10 years. However, the temporal stability of the biomarker in urine samples from a non-occupationally exposed population has not been rigorously established. We used repeated measurements of urinary cadmium (U-Cd) in spot urine samples and first morning voids from two separate cohorts, to assess the temporal stability of the samples. Urine samples from two cohorts including individuals of both sexes were measured for cadmium and creatinine. The first cohort (Home Observation of Perinatal Exposure (HOPE)) consisted of 21 never-smokers, who provided four first morning urine samples 2-5 days apart, and one additional sample roughly 1 month later. The second cohort (World Trade Center-Health Program (WTC-HP)) consisted of 78 individuals, including 52 never-smokers, 22 former smokers and 4 current smokers, who provided 2 spot urine samples 6 months apart, on average. Intra-class correlation was computed for groups of replicates from each individual to assess temporal variability. The median creatinine-adjusted U-Cd level (0.19 and 0.21 µg/g in the HOPE and WTC-HP, respectively) was similar to levels recorded in the United States by the National Health and Nutrition Examination Survey. The intra-class correlation (ICC) was high (0.76 and 0.78 for HOPE and WTC-HP, respectively) and similar between cohorts, irrespective of whether samples were collected days or months apart. Both single spot or first morning urine cadmium samples show good to excellent reproducibility in low-exposure populations.


Assuntos
Biomarcadores/urina , Cádmio/urina , Creatinina/urina , Exposição Ambiental/análise , Fumar/urina , Índice de Massa Corporal , Estudos de Coortes , Monitoramento Ambiental , Feminino , Humanos , Masculino , Análise de Regressão , Reprodutibilidade dos Testes , Ataques Terroristas de 11 de Setembro , Estados Unidos , Utah
13.
Free Radic Biol Med ; 107: 146-150, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27867099

RESUMO

Oxygen is both necessary and dangerous for aerobic cell function. ATP is most efficiently made by the electron transport chain, which requires oxygen as an electron acceptor. However, the presence of oxygen, and to some extent the respiratory chain itself, poses a danger to cellular components. Mitochondria, the sites of oxidative phosphorylation, have defense and repair pathways to cope with oxidative damage. For mitochondrial DNA, an essential pathway is base excision repair, which acts on a variety of small lesions. There are instances, however, in which attempted DNA repair results in more damage, such as the formation of a DNA-protein crosslink trapping the repair enzyme on the DNA. That is the case for mitochondrial DNA polymerase γ acting on abasic sites oxidized at the 1-carbon of 2-deoxyribose. Such DNA-protein crosslinks presumably must be removed in order to restore function. In nuclear DNA, ubiquitylation of the crosslinked protein and digestion by the proteasome are essential first processing steps. How and whether such mechanisms operate on DNA-protein crosslinks in mitochondria remains to be seen.


Assuntos
Adutos de DNA/metabolismo , DNA Polimerase gama/metabolismo , Reparo do DNA , Mitocôndrias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Adutos de DNA/química , Dano ao DNA , Desoxirribose/química , Desoxirribose/metabolismo , Radicais Livres/química , Humanos , Mitocôndrias/genética , Oxirredução , Estresse Oxidativo , Ubiquitinação
14.
DNA Repair (Amst) ; 44: 103-109, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27264558

RESUMO

Free radicals generate an array of DNA lesions affecting all parts of the molecule. The damage to deoxyribose receives less attention than base damage, even though the former accounts for ∼20% of the total. Oxidative deoxyribose fragments (e.g., 3'-phosphoglycolate esters) are removed by the Ape1 AP endonuclease and other enzymes in mammalian cells to enable DNA repair synthesis. Oxidized abasic sites are initially incised by Ape1, thus recruiting these lesions into base excision repair (BER) pathways. Lesions such as 2-deoxypentos-4-ulose can be removed by conventional (single-nucleotide) BER, which proceeds through a covalent Schiff base intermediate with DNA polymerase ß (Polß) that is resolved by hydrolysis. In contrast, the lesion 2-deoxyribonolactone (dL) must be processed by multinucleotide ("long-patch") BER: attempted repair via the single-nucleotide pathway leads to a dead-end, covalent complex with Polß cross- linked to the DNA by an amide bond. We recently detected these stable DNA-protein crosslinks (DPC) between Polß and dL in intact cells. The features of the DPC formation in vivo are exactly in keeping with the mechanistic properties seen in vitro: Polß-DPC are formed by oxidative agents in line with their ability to form the dL lesion; they are not formed by non-oxidative agents; DPC formation absolutely requires the active-site lysine-72 that attacks the 5'-deoxyribose; and DPC formation depends on Ape1 to incise the dL lesion first. The Polß-DPC are rapidly processed in vivo, the signal disappearing with a half-life of 15-30min in both mouse and human cells. This removal is blocked by inhibiting the proteasome, which leads to the accumulation of ubiquitin associated with the Polß-DPC. While other proteins (e.g., topoisomerases) also form DPC under these conditions, 60-70% of the trapped ubiquitin depends on Polß. The mechanism of ubiquitin targeting to Polß-DPC, the subsequent processing of the expected 5'-peptidyl-dL, and the biological consequences of unrepaired DPC are important to assess. Many other lyase enzymes that attack dL can also be trapped in DPC, so the processing mechanisms may apply quite broadly.


Assuntos
DNA Polimerase beta/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/metabolismo , Desoxirribose/metabolismo , Animais , Dano ao DNA , DNA Polimerase beta/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Desoxirribose/química , Meia-Vida , Humanos , Cetoses/metabolismo , Cinética , Camundongos , Estresse Oxidativo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Açúcares Ácidos/metabolismo
15.
Proc Natl Acad Sci U S A ; 112(28): 8602-7, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124145

RESUMO

Free radical attack on the C1' position of DNA deoxyribose generates the oxidized abasic (AP) site 2-deoxyribonolactone (dL). Upon encountering dL, AP lyase enzymes such as DNA polymerase ß (Polß) form dead-end, covalent intermediates in vitro during attempted DNA repair. However, the conditions that lead to the in vivo formation of such DNA-protein cross-links (DPC), and their impact on cellular functions, have remained unknown. We adapted an immuno-slot blot approach to detect oxidative Polß-DPC in vivo. Treatment of mammalian cells with genotoxic oxidants that generate dL in DNA led to the formation of Polß-DPC in vivo. In a dose-dependent fashion, Polß-DPC were detected in MDA-MB-231 human cells treated with the antitumor drug tirapazamine (TPZ; much more Polß-DPC under 1% O2 than under 21% O2) and even more robustly with the "chemical nuclease" 1,10-copper-ortho-phenanthroline, Cu(OP)2. Mouse embryonic fibroblasts challenged with TPZ or Cu(OP)2 also incurred Polß-DPC. Nonoxidative agents did not generate Polß-DPC. The cross-linking in vivo was clearly a result of the base excision DNA repair pathway: oxidative Polß-DPC depended on the Ape1 AP endonuclease, which generates the Polß lyase substrate, and they required the essential lysine-72 in the Polß lyase active site. Oxidative Polß-DPC had an unexpectedly short half-life (∼ 30 min) in both human and mouse cells, and their removal was dependent on the proteasome. Proteasome inhibition under Cu(OP)2 treatment was significantly more cytotoxic to cells expressing wild-type Polß than to cells with the lyase-defective form. That observation underscores the genotoxic potential of oxidative Polß-DPC and the biological pressure to repair them.


Assuntos
Dano ao DNA , DNA Polimerase beta/metabolismo , DNA/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Oxirredução
16.
PLoS One ; 10(7): e0133016, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208353

RESUMO

Ionizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells' differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes. Our studies show for the first time, that fractionation of protons cause latent damage to spinal cord architecture while fractionation of HZE (28Si) induce increase in APE1 with single dose, which then decreased with fractionation. The oligodendrocyte progenitor cells differentiation was skewed with increase in immature oligodendrocytes and astrocytes, which likely cause the observed decrease in white matter, increased neuro-inflammation, together leading to the observed significant cognitive defects.


Assuntos
Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Encefalite/etiologia , Encefalite/fisiopatologia , Exposição à Radiação , Radiação Ionizante , Medula Espinal/efeitos da radiação , Animais , Biomarcadores , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Encefalite/metabolismo , Encefalite/patologia , Ratos , Medula Espinal/patologia , Fatores de Tempo
18.
Proc Natl Acad Sci U S A ; 110(44): 17844-9, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24127576

RESUMO

The major mammalian apurinic/apyrimidinic endonuclease Ape1 is a multifunctional protein operating in protection of cells from oxidative stress via its DNA repair, redox, and transcription regulatory activities. The importance of Ape1 has been marked by previous work demonstrating its requirement for viability in mammalian cells. However, beyond a requirement for Ape1-dependent DNA repair activity, deeper molecular mechanisms of the fundamental role of Ape1 in cell survival have not been defined. Here, we report that Ape1 is an essential factor stabilizing telomeric DNA, and its deficiency is associated with telomere dysfunction and segregation defects in immortalized cells maintaining telomeres by either the alternative lengthening of telomeres pathway (U2OS) or telomerase expression (BJ-hTERT), or in normal human fibroblasts (IMR90). Through the expression of Ape1 derivatives with site-specific changes, we found that the DNA repair and N-terminal acetylation domains are required for the Ape1 function at telomeres. Ape1 associates with telomere proteins in U2OS cells, and Ape1 depletion causes dissociation of TRF2 protein from telomeres. Consistent with this effect, we also observed that Ape1 depletion caused telomere shortening in both BJ-hTERT and in HeLa cells. Thus, our study describes a unique and unpredicted role for Ape1 in telomere protection, providing a direct link between base excision DNA repair activities and telomere metabolism.


Assuntos
Reparo do DNA/fisiologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Homeostase do Telômero/genética , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Imunofluorescência , Humanos , Imunoprecipitação , Hibridização in Situ Fluorescente , Telomerase/metabolismo , Homeostase do Telômero/fisiologia
20.
Biochemistry ; 51(5): 937-43, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22257222

RESUMO

DNA-based nanomechanical devices can be used to characterize the action of DNA-distorting proteins. Here, we have constructed a device wherein two DNA triple-crossover (TX) molecules are connected by a shaft, similar to a previous device that measured the binding free energy of integration host factor. In our case, the binding site on the shaft contains the sequence recognized by SoxR protein, the apo form of which is a transcriptional activator. Another active form is oxidized [2Fe-2S] SoxR formed during redox sensing, and previous data suggest that activated Fe-SoxR distorts its binding site by localized DNA untwisting by an amount that corresponds to ~2 bp. A pair of dyes report the fluorescence resonance energy transfer (FRET) signal between the two TX domains, reflecting changes in the shape of the device upon binding of the protein. The TX domains are used to amplify the signal expected from a relatively small distortion of the DNA binding site. From FRET analysis of apo-SoxR binding, the effect of apo-SoxR on the original TX device is similar to the effect of shortening the TX device by 2 bp. We estimate that the binding free energy of apo-SoxR on the DNA target site is 3.2-6.1 kcal/mol.


Assuntos
Apoproteínas/química , Proteínas de Bactérias/química , DNA Bacteriano/química , Nanotecnologia/instrumentação , Conformação de Ácido Nucleico , Fatores de Transcrição/química , Sequência de Bases , Proteínas de Ligação a DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Transferência Ressonante de Energia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA