Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Res Sq ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464284

RESUMO

Background: Fluoride exposure during pregnancy has been associated with various effects on offspring, including changes in behavior and IQ. To provide clues to possible mechanisms by which fluoride affects human fetal development, we completed proteomic analyses of cord blood serum collected from second-trimester pregnant women residing in Northern California with either high or low fluoride exposure, as identified by maternal serum fluoride concentrations. Objective: To identify changes in cord blood proteins associated with maternal serum fluoride concentration in pregnant women living in Northern California. Methods: The proteomes of 19 archived second-trimester cord blood samples representing highest and lowest serum fluoride concentrations from a cohort of 48 women living in Northern California, previously analyzed for serum, urine and amniotic fluoride concentrations, were characterized by mass spectrometry. Proteins highly correlated to maternal serum fluoride concentrations were identified, and further compared in a group of samples from women with the highest serum fluoride to the group with the lowest maternal serum fluoride concentrations. Results: Nine cord blood proteins were significantly correlated with maternal serum fluoride concentrations. Six of these proteins, including apolipoprotein B-100, delta homolog 1, coagulation factor X, mimecan, plasma kallikrein, and vasorin, were significantly decreased in the cord blood from women with the highest serum fluoride levels. Conclusion: Changes in the relative amounts of second trimester cord blood proteins included proteins associated with the development of the fetal hematopoetic system.

3.
Commun Biol ; 6(1): 766, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479880

RESUMO

Postnatal cell fate is postulated to be primarily determined by the local tissue microenvironment. Here, we find that Mediator 1 (Med1) dependent epigenetic mechanisms dictate tissue-specific lineage commitment and progression of dental epithelia. Deletion of Med1, a key component of the Mediator complex linking enhancer activities to gene transcription, provokes a tissue extrinsic lineage shift, causing hair generation in incisors. Med1 deficiency gives rise to unusual hair growth via primitive cellular aggregates. Mechanistically, we find that MED1 establishes super-enhancers that control enamel lineage transcription factors in dental stem cells and their progenies. However, Med1 deficiency reshapes the enhancer landscape and causes a switch from the dental transcriptional program towards hair and epidermis on incisors in vivo, and in dental epithelial stem cells in vitro. Med1 loss also provokes an increase in the number and size of enhancers. Interestingly, control dental epithelia already exhibit enhancers for hair and epidermal key transcription factors; these transform into super-enhancers upon Med1 loss suggesting that these epigenetic mechanisms cause the shift towards epidermal and hair lineages. Thus, we propose a role for Med1 in safeguarding lineage specific enhancers, highlight the central role of enhancer accessibility in lineage reprogramming and provide insights into ectodermal regeneration.


Assuntos
Cabelo , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Epiderme , Fatores de Transcrição/genética , Esmalte Dentário
4.
Front Physiol ; 14: 1124444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814472

RESUMO

Introduction: Enamel mineralization requires calcium transport into the extracellular matrix for the synthesis of hydroxyapatite (HA) crystals. Formation of HA releases protons into the matrix, which are then neutralized when ameloblasts modulate from cells with apical invaginations, the so-called ruffle-ended ameloblasts (RE), to smooth-ended ameloblasts (SE). Ameloblast modulation is associated with the translocation of the calcium exchanger Nckx4 to the apical border of RE, to remove Na+ from the enamel matrix in exchange for Ca2+ and K+. As enamel matures, Na+ and K+ in the matrix progressively decrease. However, the transporter to remove K+ from mineralizing enamel has not been identified. Methods: Expression of K+ exchangers and channels in secretory and maturation stage of enamel organs were compared following an RNA-seq analysis. Kcnj15, which encodes the Kir4.2 inwardly rectifying K+ channel, was found to be the most upregulated internalizing K+ transporter in maturation stage of enamel organs. Kir4.2 was immunolocalized in wt, Nckx4-/-, Wdr72-/-, and fluorosed ameloblasts. Regulation of Wdr72 expression by pH was characterized in vitro and in vivo. Results: Kir4.2 immunolocalized to the apical border of wild type (wt) mouse RE and cytosol of SE, a spatial distribution pattern shared by NCKX4. In Nckx4-/- ameloblasts, Kir4.2 also localized to the apical surface of RE and cytosol of SE. However, in fluorosed and Wdr72-/- ameloblasts, in which vesicle trafficking is disrupted, Kir4.2 remained in the cytosol. In vitro, Wdr72 was upregulated in LS8 cells cultured in medium with a pH 6.2, which is the pH of the enamel matrix underlying RE, as compared to pH 7.2 under SE. Conclusion: Taken together these results suggest that Kir4.2 participates in K+ uptake by maturation ameloblasts, and that K+ and Na+ uptake by Kir4.2 and Nckx4, respectively, may be regulated by pH through WDR72-mediated endocytosis and membrane trafficking.

5.
Front Physiol ; 14: 1116091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814474

RESUMO

Enamel development is a process in which extracellular matrix models from a soft proteinaceous matrix to the most mineralized tissue in vertebrates. Patients with mutant NCKX4, a gene encoding a K+-dependent Na+/Ca2+-exchanger, develop a hypomineralized and hypomature enamel. How NCKX4 regulates enamel protein removal to achieve an almost protein-free enamel is unknown. We characterized the upregulation pattern of Nckx4 in the progressively differentiating enamel-forming ameloblasts by qPCR, and as well as confirmed NCKX4 protein to primarily localize at the apical surface of wild-type ruffle-ended maturation ameloblasts by immunostaining of the continuously growing mouse incisors, posing the entire developmental trajectory of enamel. In contrast to the normal mature enamel, where ECM proteins are hydrolyzed and removed, we found significant protein retention in the maturation stage of Nckx4 -/- mouse enamel. The Nckx4 -/- enamel held less Ca2+ and K+ but more Na+ than the Nckx4 +/+ enamel did, as measured by EDX. The alternating acidic and neutral pH zones at the surface of mineralizing Nckx4 +/+ enamel were replaced by a largely neutral pH matrix in the Nckx4 -/- enamel. In situ zymography revealed a reduced kallikrein-related peptidase 4 (KLK4) activity in the Nckx4 -/- enamel. We showed that KLK4 took on 90% of proteinase activity in the maturation stage of normal enamel, and that recombinant KLK4 as well as native mouse enamel KLK4 both performed less effectively in a buffer with increased [Na+] and pH, conditions found in the Nckx4 -/- developing enamel. This study, for the first time to our knowledge, provides evidence demonstrating the impaired in situ KLK4 activity in Nckx4 -/- enamel and suggests a novel function of NCKX4 in facilitating KLK4-mediated hydrolysis and removal of ECM proteins, warranting the completion of enamel matrix modeling.

6.
Environ Health ; 21(1): 102, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36289513

RESUMO

BACKGROUND: Ingestion of fluoride in drinking water has been shown to result in increased cellular markers of inflammation in rodent models. However, the approximately 5-10 × increase in water fluoride concentrations required in rat and mouse models to obtain plasma fluoride concentrations similar to those found in humans has made relevant comparisons of animal to human studies difficult to assess. As an increased white blood cell count (WBC) is a marker of inflammation in humans, we used available NHANES survey data to assess the associations between plasma fluoride levels in the U.S. and blood cell counts children and adolescents.   METHODS: Multiple linear regressions were done to determine the association of blood cell counts and plasma fluoride in publicly available NHANES survey data from the 2013-2014 and 2015-2016 cycles. Plasma fluoride concentration measurements were available only for children aged 6 to 19, inclusive, and therefore this subpopulation was used for all analyses. Covariate predictors along with plasma fluoride were age, ethnicity, gender, and Body Mass Index (BMI).  RESULTS: Plasma fluoride was significantly positively associated with water fluoride, total WBC count, segmented neutrophils, and monocytes, and negatively associated with red blood cell count when adjusted for age, gender and BMI. CONCLUSION: Our finding that neutrophils and monocytes are associated with higher plasma fluoride in U.S. children and adolescents is consistent with animal data showing fluoride related effects of increased inflammation. These findings suggest the importance of further studies to assess potential mechanisms that are involved in absorption and filtration of ingested fluoride, particularly in tissues and organs such as the small intestine, liver and kidney.


Assuntos
Água Potável , Fluoretos , Criança , Camundongos , Estados Unidos/epidemiologia , Adolescente , Humanos , Ratos , Animais , Fluoretos/análise , Inquéritos Nutricionais , Água Potável/análise , Inflamação/induzido quimicamente , Inflamação/epidemiologia , Contagem de Leucócitos , Células Sanguíneas/química , Células Sanguíneas/metabolismo
7.
PeerJ ; 10: e14040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172496

RESUMO

Background: Hematopoietic cell transplantation (HCT) is a potentially curative therapy for a wide range of pediatric malignant and nonmalignant diseases. However, complications, including blood stream infection (BSI) remain a major cause of morbidity and mortality. While certain bacteria that are abundant in the oral microbiome, such as S. mitis, can cause BSI, the role of the oral microbial community in the etiology of BSI is not well understood. The finding that the use of xylitol wipes, which specifically targets the cariogenic bacteria S. mutans is associated with reduced BSI in pediatric patients, lead us to investigate dental caries as a risk factor for BSI. Methods: A total of 41 pediatric patients admitted for allogenic or autologous HCT, age 8 months to 25 years, were enrolled. Subjects with high dental caries risk were identified as those who had dental restorations completed within 2 months of admission for transplant, or who had untreated decay. Fisher's exact test was used to determine if there was a significant association between caries risk and BSI. Dental plaque and saliva were collected on a cotton swab from a subset of four high caries risk (HCR) and four low caries risk (LCR) children following pretransplant conditioning. 16SrRNA sequencing was used to compare the microbiome of HCR and LCR subjects and to identify microbes that were significantly different between the two groups. Results: There was a statistically significant association between caries risk and BSI (p < 0.035) (Fisher's exact test). Multivariate logistic regression analysis showed children in the high dental caries risk group were 21 times more likely to have BSI, with no significant effect of age or mucositis severity. HCR subjects showed significantly reduced microbial alpha diversity as compared to LCR subjects. LEfse metagenomic analyses, showed the oral microbiome in HCR children enriched in order Lactobacillales. This order includes Streptococcus and Lactobacillus, both which contain bacteria primarily associated with dental caries. Discussion: These findings support the possibility that the cariogenic microbiome can enhance the risk of BSI in pediatric populations. Future metagenomic analyses to measure microbial differences at, before, and after conditioning related to caries risk, may further unravel the complex relationship between the oral microbiome, and whether it affects health outcomes such as BSI.


Assuntos
Infecções Bacterianas , Cárie Dentária , Transplante de Células-Tronco Hematopoéticas , Sepse , Humanos , Criança , Cárie Dentária/epidemiologia , Bactérias , Streptococcus , Fatores de Risco , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
8.
Sci Rep ; 12(1): 2820, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181734

RESUMO

As the hardest tissue in the human body, tooth enamel formation is a highly regulated process involving several stages of differentiation and key regulatory genes. One such gene, tryptophan-aspartate repeat domain 72 (WDR72), has been found to cause a tooth enamel defect when deleted or mutated, resulting in a condition called amelogenesis imperfecta. Unlike the canonical genes regulating tooth development, WDR72 remains intracellularly and is not secreted to the enamel matrix space to regulate mineralization, and is found in other major organs of the body, namely the kidney, brain, liver, and heart. To date, a link between intracellular vesicle transport and enamel mineralization has been suggested, however identification of the mechanistic regulators has yet to be elucidated, in part due to the limitations associated with studying highly differentiated ameloblast cells. Here we show compelling evidence that WDR72 regulates endocytosis of proteins, both in vivo and in a novel in vitro ameloblast cell line. We elucidate WDR72's function to be independent of intracellular vesicle acidification while still leading to defective enamel matrix pH extracellularly. We identify a vesicle function associated with microtubule assembly and propose that WDR72 directs microtubule assembly necessary for membrane mobilization and subsequent vesicle transport. Understanding WDR72 function provides a mechanistic basis for determining physiologic and pathologic tissue mineralization.


Assuntos
Ameloblastos/metabolismo , Calcificação Fisiológica/genética , Esmalte Dentário/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Encéfalo/metabolismo , Diferenciação Celular/genética , Esmalte Dentário/metabolismo , Endocitose/genética , Humanos , Rim/metabolismo , Fígado/metabolismo , Microtúbulos/genética , Miocárdio/metabolismo , Dente/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-37034482

RESUMO

In a systemic effort to survive environmental stress, organ systems fluctuate and adapt to overcome external pressures. The evolutionary drive back toward homeostasis makes it difficult to determine if an organism experienced a toxic exposure to stress, especially in early prenatal and neonatal periods of development. Previous studies indicate that primary human teeth may provide historical records of experiences related to stressors during that early time window. To assess the molecular effects of early life adversity on enamel formation, we used a limited bedding and nesting (LBN) mouse model of early life adversity (ELA) to assess changes in the enamel organ gene expression and enamel matrix mineralization. On average, postnatal day 12 (P12) ELA mice weighed significantly less than the controls. When adjusted for animal weight, ELA molar enamel volume was reduced as compared with the controls, and the relative mineral density of molar enamel was significantly increased. There were no obvious changes in enamel matrix crystal morphology or structure in ELA as compared with the control mouse enamel. RNAseq showed extracellular matrix organization to be the most significantly affected GO and reactome pathways, whereas butanote metabolism was the most significantly altered KEGG pathway. Transcripts expressing the enamel matrix proteins amelogenin (Amelx) and enamelin (Enam) were among the top 4 most differentially expressed genes. When evaluating molecular mechanisms for the changes in gene expression in ELA enamel organs, we found significantly increased expression of Dlx3, while transcripts for clock genes Per1 and Nrd1 were downregulated. These findings support the possibility that the developing enamel organ is sensitive to the pressures of early life adversity and produces molecular and structural biomarkers reflecting these challenges.

10.
Chemosphere ; 273: 129607, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33508686

RESUMO

Gastrointestinal signs and symptoms are the first signs of toxicity due to exposure to fluoride (F). This suggests the possibility that lower levels of subchronic F exposure may affect the gut. The aim of this study was to evaluate changes in the morphology, proteome and microbiome of the ileum of rats, after subchronic exposure to F. Male rats ingested water with 0, 10, or 50 mgF/L for thirty days. Treatment with F, regardless of the dose, significantly decreased the density of HuC/D-IR neurons, whereas CGRP-IR and SP-IR varicosities were significantly increased compared to the control group. Increased VIP-IR varicosities were significantly increased only in the group treated with 50 mgF/L. A significant increase in thickness of the tunica muscularis, as well as in the total thickness of the ileum wall was observed at both F doses when compared to controls. In proteomics analysis, myosin isoforms were increased, and Gastrotopin was decreased in F-exposed mice. In the microbiome metagenomics analysis, Class Clostridia was significantly reduced upon exposure to 10 mgF/L. At the higher F dose of 50 mg/L, genus Ureaplasma was significantly reduced in comparison with controls. Morphological and proteomics alterations induced by F were marked by changes associated with inflammation, and alterations in the gut microbiome. Further studies are needed to determine whether F exposure increases inflammation with secondary effects of the gut microbiome, and/or whether primary effects of F on the gut microbiome enhance changes associated with inflammation.


Assuntos
Fluoretos , Microbioma Gastrointestinal , Animais , Firmicutes , Fluoretos/toxicidade , Masculino , Camundongos , Proteoma , Proteômica , Ratos
11.
Biol Trace Elem Res ; 199(8): 3021-3034, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33113116

RESUMO

Fluoride can alter the formation of mineralized tissues, including enamel, dentin, and bone. Dentin fluorosis occurs in tandem with enamel fluorosis. However, the pathogenesis of dentin fluorosis and its mechanisms are poorly understood. In this study, we report the effects of fluoride on the initiation of dentin matrix formation and odontoblast function. Mice from two enamel fluorosis susceptible strains (A/J and C57BL/6J) were given either 0 or 50 ppm fluoride in drinking water for 4 weeks. In both mouse strains, there was no overall change in dentin thickness, but fluoride treatment resulted in a significant increase in the thickness of the predentin layer. The lightly mineralized layer (LL), which lies at the border between predentin and fully mineralized dentin and is associated with dentin phosphoprotein (DPP), was absent in fluoride exposed mice. Consistent with a possible reduction of DPP, fluoride-treated mice showed reduced immunostaining for dentin sialoprotein (DSP). Fluoride reduced RUNX2, the transcription regulator of dentin sialophosphoprotein (DSPP), that is cleaved to form both DPP and DSP. In fluoride-treated mouse odontoblasts, the effect of fluoride was further seen in the upstream of RUNX2 as the reduced nuclear translocation of ß-catenin and phosphorylated p65/NFκB. In vitro, MD10-F2 pre-odontoblast cells showed inhibition of the Dspp mRNA level in the presence of 10 µM fluoride, and qPCR analysis showed a significantly downregulated level of mRNAs for RUNX2, ß-catenin, and Wnt10b. These findings indicate that in mice, systemic exposure to excess fluoride resulted in reduced Wnt/ß-catenin signaling in differentiating odontoblasts to downregulate DSPP production via RUNX2.


Assuntos
Fluoretos , Sialoglicoproteínas , Animais , Dentina , Proteínas da Matriz Extracelular/genética , Fluoretos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Fosfoproteínas/genética
12.
Biol Psychiatry ; 87(6): 502-513, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31858984

RESUMO

Early-life adversity affects nearly half of all youths in the United States and is a known risk factor for psychiatric disorders across the life course. One strategy to prevent mental illness may be to target interventions toward children who are exposed to adversity, particularly during sensitive periods when these adversities may have even more enduring effects. However, a major obstacle impeding progress in this area is the lack of tools to reliably and validly measure the existence and timing of early-life adversity. In this review, we summarize empirical work across dentistry, anthropology, and archaeology on human tooth development and discuss how teeth preserve a time-resolved record of our life experiences. Specifically, we articulate how teeth have been examined in these fields as biological fossils in which the history of an individual's early-life experiences is permanently imprinted; this area of research is related to, but distinct from, studies of oral health. We then integrate these insights with knowledge about the role of psychosocial adversity in shaping psychopathology risk to present a working conceptual model, which proposes that teeth may be an understudied yet suggestive new tool to identify individuals at risk for mental health problems following early-life psychosocial stress exposure. We end by presenting a research agenda and discussion of future directions for rigorously testing this possibility and with a call to action for interdisciplinary research to meet the urgent need for new biomarkers of adversity and psychiatric outcomes.


Assuntos
Maus-Tratos Infantis , Transtornos Mentais , Adolescente , Criança , Humanos , Saúde Mental , Psicopatologia , Fatores de Risco , Estresse Psicológico
13.
BMC Biol ; 17(1): 104, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31830989

RESUMO

BACKGROUND: Polarity is necessary for epithelial cells to perform distinct functions at their apical and basal surfaces. Oral epithelial cell-derived ameloblasts at secretory stage (SABs) synthesize large amounts of enamel matrix proteins (EMPs), largely amelogenins. EMPs are unidirectionally secreted into the enamel space through their apical cytoplasmic protrusions, or Tomes' processes (TPs), to guide the enamel formation. Little is known about the transcriptional regulation underlying the establishment of cell polarity and unidirectional secretion of SABs. RESULTS: The higher-order chromatin architecture of eukaryotic genome plays important roles in cell- and stage-specific transcriptional programming. A genome organizer, special AT-rich sequence-binding protein 1 (SATB1), was discovered to be significantly upregulated in ameloblasts compared to oral epithelial cells using a whole-transcript microarray analysis. The Satb1-/- mice possessed deformed ameloblasts and a thin layer of hypomineralized and non-prismatic enamel. Remarkably, Satb1-/- ameloblasts at the secretory stage lost many morphological characteristics found at the apical surface of wild-type (wt) SABs, including the loss of Tomes' processes, defective inter-ameloblastic adhesion, and filamentous actin architecture. As expected, the secretory function of Satb1-/- SABs was compromised as amelogenins were largely retained in cells. We found the expression of epidermal growth factor receptor pathway substrate 8 (Eps8), a known regulator for actin filament assembly and small intestinal epithelial cytoplasmic protrusion formation, to be SATB1 dependent. In contrast to wt SABs, EPS8 could not be detected at the apical surface of Satb1-/- SABs. Eps8 expression was greatly reduced in small intestinal epithelial cells in Satb1-/- mice as well, displaying defective intestinal microvilli. CONCLUSIONS: Our data show that SATB1 is essential for establishing secretory ameloblast cell polarity and for EMP secretion. In line with the deformed apical architecture, amelogenin transport to the apical secretory front and secretion into enamel space were impeded in Satb1-/- SABs resulting in a massive cytoplasmic accumulation of amelogenins and a thin layer of hypomineralized enamel. Our studies strongly suggest that SATB1-dependent Eps8 expression plays a critical role in cytoplasmic protrusion formation in both SABs and in small intestines. This study demonstrates the role of SATB1 in the regulation of amelogenesis and the potential application of SATB1 in ameloblast/enamel regeneration.


Assuntos
Ameloblastos/fisiologia , Amelogênese , Polaridade Celular , Esmalte Dentário/crescimento & desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/genética , Animais , Diferenciação Celular , Humanos , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos
14.
Front Physiol ; 8: 925, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29249975

RESUMO

Fluorosed maturation stage enamel is hypomineralized in part due to a delay in the removal of matrix proteins to inhibit final crystal growth. The delay in protein removal is likely related to reduced expression of kallikrein-related peptidase 4 (KLK4), resulting in a reduced matrix proteinase activity that found in fluorosed enamel. Klk4 transcription is known to be regulated in other cell types by androgen receptor (AR) and progesterone receptors (PR). In this study, we determined the possible role of fluoride in down-regulation of KLK4 expression through changes in AR and PR. Immunohistochemical localization showed that both AR and PR nuclear translocation was suppressed in fluoride exposed mice. However, when AR signaling was silenced in mouse ameloblast-lineage cells (ALCs), expression of both Pgr and Klk4 were increased. Similar to the effect from AR silencing, fluoride also upregulated Pgr in ALCs, but downregulated Klk4. This finding suggests that though suppression of AR transactivation by fluoride increases Prg expression, inhibition of PR transactivation by fluoride has a much greater effect, ultimately resulting in downregulation of Klk4 expression. These findings indicate that in ameloblasts, PR has a dominant role in regulating Klk4 expression. We found that when AR was retained in the cytoplasm in the presence of fluoride, that co-localized with heat shock protein 90 (HSP90), a well-known chaperone for steroid hormone receptors. HSP90 also known to regulate TGF-ß signaling. Consistent with the effect of fluoride on AR and HSP90, we found evidence of reduced TGF-ß signaling activity in fluorosed ameloblasts as reduced immunolocalization of TGFB1 and TGFBR-2 and a significant increase in Cyclin D1 mRNA expression, which also possibly contributes to the reduced AR signaling activity. In vitro, when serum was removed from the media, aluminum was required for fluoride to inhibit the dissociation of HSP90 from AR. In conclusion, fluoride related downregulation of Klk4 is associated with reduced nuclear translocation of AR and PR, and also reduced TGF-ß signaling activity, all of which are regulated by HSP90. We suggest that a common mechanism by which fluoride affects AR, PR, and TGF-ß signaling is through inhibiting ATP-dependent conformational cycling of HSP90.

15.
Front Physiol ; 7: 258, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458382

RESUMO

Magnesium ion (Mg(2+)) is the fourth most common cation in the human body, and has a crucial role in many physiological functions. Mg(2+) homeostasis is an important contributor to bone development, however, its roles in the development of dental mineralized tissues have not yet been well known. We identified that transient receptor potential cation channel, subfamily M, member 7 (TRPM7), was significantly upregulated in the mature ameloblasts as compared to other ameloblasts through our whole transcript microarray analyses of the ameloblasts. TRPM7, an ion channel for divalent metal cations with an intrinsic serine/threonine protein kinase activity, has been characterized as a key regulator of whole body Mg(2+) homeostasis. Semi-quantitative PCR and immunostaining for TRMP7 confirmed its upregulation during the maturation stage of enamel formation, at which ameloblasts direct rapid mineralization of the enamel matrix. The significantly hypomineralized craniofacial structures, including incisors, molars, and cranial bones were demonstrated by microCT analysis, von Kossa and trichrome staining in Trpm7 (Δkinase∕+) mice. A previously generated heterozygous mouse model with the deletion of the TRPM7 kinase domain. Interestingly, the skeletal phenotype of Trpm7 (Δkinase∕+) mice resembled those found in the tissue-nonspecific alkaline phosphatase (Alpl) KO mice, thus we further examined whether ALPL protein content and alkaline phosphatase (ALPase) activity in ameloblasts, odontoblasts and osteoblasts were affected in those mice. While ALPL protein in Trpm7 (Δkinase∕+) mice remained at the similar level as that in wt mice, ALPase activities in the Trpm7 (Δkinase∕+) mice were almost nonexistent. Supplemented magnesium successfully rescued the activities of ALPase in ameloblasts, odontoblasts and osteoblasts of Trpm7 (Δkinase∕+) mice. These results suggested that TRPM7 is essential for mineralization of enamel as well as dentin and bone by providing sufficient Mg(2+) for the ALPL activity, underlining the key importance of ALPL for biomineralization.

16.
PLoS One ; 9(8): e103994, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25090413

RESUMO

Dental fluorosis is characterized by subsurface hypomineralization and increased porosity of enamel, associated with a delay in the removal of enamel matrix proteins. To investigate the effects of fluoride on ameloblasts, A/J mice were given 50 ppm sodium fluoride in drinking water for four weeks, resulting serum fluoride levels of 4.5 µM, a four-fold increase over control mice with no fluoride added to drinking water. MicroCT analyses showed delayed and incomplete mineralization of fluorosed incisor enamel as compared to control enamel. A microarray analysis of secretory and maturation stage ameloblasts microdissected from control and fluorosed mouse incisors showed that genes clustered with Mmp20 appeared to be less downregulated in maturation stage ameloblasts of fluorosed incisors as compared to control maturation ameloblasts. One of these Mmp20 co-regulated genes was the global chromatin organizer, special AT-rich sequence-binding protein-1 (SATB1). Immunohistochemical analysis showed increased SATB1 protein present in fluorosed ameloblasts compared to controls. In vitro, exposure of human ameloblast-lineage cells to micromolar levels of both NaF and AlF3 led to a significantly increase in SATB1 protein content, but not levels of Satb1 mRNA, suggesting a fluoride-induced mechanism protecting SABT1 from degradation. Consistent with this possibility, we used immunohistochemistry and Western blot to show that fluoride exposed ameloblasts had increased phosphorylated PKCα both in vivo and in vitro. This kinase is known to phosphorylate SATB1, and phosphorylation is known to protect SATB1 from degradation by caspase-6. In addition, production of cellular diacylglycerol (DAG) was significantly increased in fluorosed ameloblasts, suggesting that the increased phosphorylation of SATB1 may be related to an effect of fluoride to enhance Gαq activity of secretory ameloblasts.


Assuntos
Ameloblastos/metabolismo , Amelogênese/efeitos dos fármacos , Fluorose Dentária/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fluoreto de Sódio/farmacologia , Ameloblastos/patologia , Amelogênese/genética , Animais , Caspase 6/genética , Caspase 6/metabolismo , Esmalte Dentário/metabolismo , Esmalte Dentário/patologia , Diglicerídeos/metabolismo , Feminino , Fluorose Dentária/metabolismo , Fluorose Dentária/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Incisivo/metabolismo , Incisivo/patologia , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Metaloproteinase 20 da Matriz/genética , Metaloproteinase 20 da Matriz/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
17.
Environ Toxicol Chem ; 33(1): 82-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24105802

RESUMO

Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Cariostáticos/toxicidade , Fluoretos/toxicidade , Ácido Silícico/toxicidade , Fluoreto de Sódio/toxicidade , Animais , Caenorhabditis elegans/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Fluoretação , Reprodução/efeitos dos fármacos
18.
Pediatr Dent ; 34(4): e86-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23014079

RESUMO

PURPOSE: The purpose of this study was to investigate virulence factors associated with maternal transmission of mutans streptococci (MS). METHODS: Saliva samples were collected from 10 mothers with active caries and their 2- to 5-year-old children. Ten MS colonies were isolated from each subject. Transmission of MS was identified by arbitrarily primed polymerase chain reactions. Biofilm formation and mutacin production of the isolates against Streptococcus gordonii 10558, Streptococcus sanguinis 10557, Streptococcus mutans 25175, and Streptococcus sobrinus 6715 were analyzed. RESULTS: All mothers and children had MS colonization. Only 7 of the 36 maternal genotypes (33 Streptococcus mutans genotypes and 3 Streptococcus sobrinus genotypes) were transmitted. Maternal transmission was found in 4 mother-child pairs, whereas 9 children had nonmaternal genotypes. There was no difference in biofilm formation between transmitted and nontransmitted genotypes (P>.05). Transmitted genotypes, however, produced more mutacin against Streptococcus sobrinus 6715 than nontransmitted genotypes. CONCLUSIONS: This pilot study showed that there may be nonmaternal as well as maternal mutans streptococci transmission.


Assuntos
Transmissão Vertical de Doenças Infecciosas , Infecções Estreptocócicas/transmissão , Streptococcus mutans/isolamento & purificação , Adulto , Biofilmes , Criança , Feminino , Humanos , Masculino , Projetos Piloto , Reação em Cadeia da Polimerase , Fatores de Risco
19.
Int J Dev Biol ; 55(10-12): 953-60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22252492

RESUMO

The role of the prion protein (PrP) in transmissible spongiform encephalopathies has been the focus of intense investigation. However, less is known about the physiological function of normal cellular PrP (PrP(C)). In adult human teeth, PrP(C) has been identified in odontoblasts, cementoblasts and epithelial remnants of Malassez. In this study, we have localized PrP(C) in developing human and mouse teeth, and investigated the function of PrP using a PrP-knockout (Prnp(0/0) ) mouse model. PrP(C) was detected in developing human and mouse ameloblasts and odontoblasts. In vitro, undifferentiated dental mesenchymal cells from embryonic day 18 (E18) Prnp(0/0) mouse molars proliferated much more rapidly compared to age-matched, wild-type (wt) mouse molar dental mesenchymal cells. Histochemistry and immunohistochemical analyses showed a subtle but measurable phenotype, with the absence of PrP resulting in earlier initiation of both dentin and enamel formation. Consistent with this finding, laser microdissected odontoblasts from newborn Prnp(0/0) mouse incisors had a reduced proliferation rate, as measured by the expression of proliferating cell nuclear antigen (PCNA), and increased type 1 collagen mRNA expression. Dentin microhardness of the fully erupted molars was reduced and incisal enamel mineralization was delayed in Prnp(0/0) compared to age-matched wt mouse teeth. Taken together, these results suggest that PrP(C) affects multiple processes involved in tooth formation, through regulating the differentiation of ameloblasts and odontoblasts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Príons/metabolismo , Dente/embriologia , Ameloblastos/citologia , Animais , Colágeno Tipo I/metabolismo , Humanos , Imuno-Histoquímica/métodos , Hibridização In Situ , Camundongos , Camundongos Knockout , Dente Molar/embriologia , Odontoblastos/citologia , Antígeno Nuclear de Célula em Proliferação/biossíntese , Fatores de Tempo
20.
Soc Sci Med ; 71(9): 1644-52, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20870333

RESUMO

The studies reported here examines stress-related psychobiological processes that might account for the high, disproportionate rates of dental caries, the most common chronic disease of childhood, among children growing up in low socioeconomic status (SES) families. In two 2004-2006 studies of kindergarten children from varying socioeconomic backgrounds in the San Francisco Bay Area of California (Ns = 94 and 38), we performed detailed dental examinations to count decayed, missing or filled dental surfaces and microtomography to assess the thickness and density of microanatomic dental compartments in exfoliated, deciduous teeth (i.e., the shed, primary dentition). Cross-sectional, multivariate associations were examined between these measures and SES-related risk factors, including household education, financial stressors, basal and reactive salivary cortisol secretion, and the number of oral cariogenic bacteria. We hypothesized that family stressors and stress-related changes in oral biology might explain, fully or in part, the known socioeconomic disparities in dental health. We found that nearly half of the five-year-old children studied had dental caries. Low SES, higher basal salivary cortisol secretion, and larger numbers of cariogenic bacteria were each significantly and independently associated with caries, and higher salivary cortisol reactivity was associated with thinner, softer enamel surfaces in exfoliated teeth. The highest rates of dental pathology were found among children with the combination of elevated salivary cortisol expression and high counts of cariogenic bacteria. The socioeconomic partitioning of childhood dental caries may thus involve social and psychobiological pathways through which lower SES is associated with higher numbers of cariogenic bacteria and higher levels of stress-associated salivary cortisol. This convergence of psychosocial, infectious and stress-related biological processes appears to be implicated in the production of greater cariogenic bacterial growth and in the conferral of an increased physical vulnerability of the developing dentition.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cárie Dentária/etiologia , Classe Social , Estresse Psicológico/complicações , Criança , Contagem de Colônia Microbiana , Estudos Transversais , Cárie Dentária/microbiologia , Cárie Dentária/psicologia , Família/psicologia , Feminino , Humanos , Hidrocortisona/análise , Masculino , Fatores de Risco , Saliva/química , São Francisco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...