Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(7): 073101, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340431

RESUMO

The Transition-Edge Sensor (TES) is an extremely sensitive device, which is used to measure the energy of individual x-ray photons. For astronomical spectrometry applications, SRON develops a frequency domain multiplexing readout system for kilopixel arrays of such TESs. Each TES is voltage biased at a specific frequency in the range of 1-5 MHz. Isolation between the individual pixels is obtained through very narrow-band (high-Q) lithographic LC resonators. To prevent energy resolution degradation due to intermodulation line noise, the bias frequencies are distributed on a regular grid. The requirements on the accuracy of the LC resonance frequency are very high. The deviation of the resonance frequencies due to production tolerances is significant with respect to the bandwidth, and a controller is necessary to compensate for the LC series impedance. We present two such controllers: a simple orthogonal proportional-integral controller and a more complex impedance estimator. Both controllers operate in baseband and try to make the TES current in-phase with the bias voltage, effectively operating as phase-locked loops. They allow off-LC-resonance operation of the TES pixels while preserving the TES thermal response and energy resolution. Extensive experimental results-published in a companion paper recently-with the proposed methods show that these controllers allow the preservation of single pixel energy resolution in multiplexed operation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32020916

RESUMO

To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases. All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 - 300 keV band. The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) ×10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases. However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a > 0.02% brightening of the pulse-peak flux under such conditions.

3.
J Opt Soc Am A Opt Image Sci Vis ; 24(4): 1042-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17361290

RESUMO

In optical aperture-synthesis imaging of stellar objects, different beam combination strategies are used and proposed. Coaxial Michelson interferometers are very common and a homothetic multiaxial interferometer is recently realized in the Large Binocular Telescope. Laboratory experiments have demonstrated the working principles of two new approaches: densified pupil imaging and wide field-of-view (FOV) coaxial imaging using a staircase-shaped mirror. We develop a common mathematical formulation for direct comparison of the resolution and noise sensitivity of these four telescope configurations for combining beams from multiple apertures for interferometric synthetic aperture, wide-FOV imaging. Singular value decomposition techniques are used to compare the techniques and observe their distinct signal-to-noise ratio behaviors. We conclude that for a certain chosen stellar object, clear differences in performance of the imagers are identifiable.


Assuntos
Algoritmos , Astronomia/instrumentação , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Interferometria/instrumentação , Astronomia/métodos , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Interferometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...