Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30601, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742054

RESUMO

Stability and cytotoxicity of PEGylated Au NPs is crucial for biomedical application. In this study, we have focused on thermal stability of PEGylated Au NPs at 4 and 37 °C and after sterilization in autoclave. Gold nanoparticles were prepared by direct sputtering of gold into PEG and PEG-NH2. Transmission electron microscopy revealed that NPs exhibit a spherical shape with average dimensions 3.8 nm for both AuNP_PEG and AuNP_PEG-NH2. The single LSPR band at wavelength of 509 nm also confirmed presence of spherical Au NPs in both cases. Moreover, according to UV-Vis spectra, the Au NPs were overall stable during aging or thermal stressing and even after sterilization in autoclave. Based on gel electrophoresis results, the higher density of functionalizing ligands and the higher stability is assumed on AuNP_PEG-NH2. Changes in concentration of gold did not occur after thermal stress or with aging. pH values have to be adjusted to be suitable for bioapplications - original pH values are either too alkaline (AuNP_PEG-NH2, pH 10) or too acidic (AuNP_PEG, pH 5). Cytotoxicity was tested on human osteoblasts and fibroblasts. Overall, both Au NPs have shown good cytocompatibility either freshly prepared or even after Au NPs' sterilization in the autoclave. Prepared Au NP dispersions were also examined for their antiviral activity, however no significant effect was observed. We have synthesized highly stable, non-cytotoxic PEGylated Au NPs, which are ready for preclinical testing.

2.
Anal Chem ; 96(14): 5416-5427, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38450646

RESUMO

The use of addictive substances, including drugs, poses significant health risks and contributes to various social problems, such as increased crime rates associated with substance-induced aggressive behavior. To address these challenges, possession of addictive substances is legally prohibited. However, detecting and analyzing these substances remain a complex task for law enforcement, primarily due to the presence of adulterants or limited sample quantities. In response to the evolving illicit market, continuous development and adaptation of analytical techniques are essential. One approach is the utilization of surface-enhanced Raman scattering (SERS) spectroscopy, which involves adsorbing the analyte onto nanostructured plasmonic surfaces. This study explores the potential of SERS in detecting amphetamine-based addictive stimulants with a specific focus on the properties of enhancing surfaces chosen. Comparative investigations were performed using silver and gold surfaces, with gold colloidal systems demonstrating a favorable performance. Moreover, to provide a comprehensive interpretation of the measured spectra, extensive density functional theory (DFT) calculations were conducted, allowing for a deeper understanding of the observed spectral features and molecular interactions with the metal surfaces. This review presents insights into the role of chemical enhancement in SERS analysis of amphetamine-metal interactions, shedding light on the selective amplification of vibrational modes. These findings, supported by DFT calculations, have implications in the fields of spectroscopy, physical chemistry, and drug analysis, providing valuable contributions to forensic applications and a deeper understanding of chemical enhancement phenomena. We present the impact of the secondary resonances of Stokes-scattered photons. This illustrates the significance of recognizing the constraints of the frequently employed "E4" approximation, even in measurements involving multiple molecules rather than single molecules.

3.
ACS Omega ; 9(5): 6005-6017, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38343947

RESUMO

This study focuses on investigating the laser-induced reactions of various surface complexes of 4-aminobenzenethiol on Ag, Au, and Cu surfaces. By utilizing different excitation wavelengths, the distinct behavior of the molecule species on the plasmonic substrates was observed. Density functional theory (DFT) calculations were employed to establish the significant role of chemical enhancement mechanisms in determining the observed behavior. The interaction between 4-aminobenzenethiol (4-ABT) molecules and plasmonic surfaces led to the formation of surface complexes with absorption bands red-shifted into the visible and near-infrared regions. Photochemical transformations were induced by excitation wavelengths from these regions, with the nature of the transformations varying based on the excitation wavelength and the plasmonic metal. Resonance with the electronic absorption transitions of these complexes amplifies surface-enhanced Raman scattering (SERS), enabling the detailed examination of ongoing processes. A kinetic study on the Ag surface revealed processes governed by both first- and second-order kinetics, attributed to the dimerization process and transformation processes of individual molecules interacting with photons or plasmons. The behavior of the molecules was found to be primarily determined by the position and variability of the band between 1170 and 1190 cm-1, with the former corresponding to molecules in the monomer state and the latter to dimerized molecules. Notably, laser-induced dimerization occurred most rapidly on the Cu surface, followed by Ag, and least on Au. These findings highlight the influence of plasmonic surfaces on molecular behavior and provide insights into the potential applications of laser-induced reactions for surface analysis and manipulation.

4.
Colloids Surf B Biointerfaces ; 235: 113769, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306803

RESUMO

Polydopamine (PDA) is a widely used anchoring layer for multiple purposes. While simple to prepare, PDA is characterized by high chemical and topological diversity, which can limit its versatility. Unraveling the formation mechanism and physicochemical properties of continuous confluent layer and adherent nanoparticles on the nanoscale is crucial to further extend the prospective applications of PDA. Utilizing nano-FTIR spectroscopy, we investigate layers of PDA on three different substrates (silicon/silicon dioxide, nitrogen-doped titanium oxide, and gold substrates) at varying times of deposition (ToD). We observed a good correlation between the nano-FTIR and macroscopic FTIR spectra that reflected the changes in the relative abundance of PDA and polymerization intermediates as ToD increased. To gain analytical power, we utilized the principal component analysis (PCA) and extracted additional information from the resulting loadings spectral curves and data distribution in the score plots. We revealed a higher variability of the spectra of ultrathin surface confluent layers compared to the adherent nanoparticles. While the spectra of nanoparticles showed no apparent dependency on either ToD or the substrate material, the spectra of layers were highly affected by the increasing ToD and exhibited a rise in the absorption of PDA. Concomitantly, the spectra of layers grouped according to the substrate material at the lowest ToD point to the fact that the substrate material affects the PDA's initial physicochemical structure. The observed separation gradually diminished with the increasing ToD as the PDA physicochemical structure became less influenced by the substrate material.


Assuntos
Nanopartículas , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Polímeros/química , Nanopartículas/química , Indóis/química , Óxido Nítrico
5.
ACS Omega ; 8(46): 44221-44228, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027376

RESUMO

Coupling of electron-deficient urea units with aliphatic chains gives rise to amphiphilic compounds that bind to phosphate and benzoate anions in the hydrogen bonding competitive solvent (DMSO) with KAss = 6 580 M-1 and KAss = 4 100 M-1, respectively. The anchoring of these receptor moieties to the dendritic support does not result in a loss of anion binding and enables new applications. Due to the formation of a microenvironment in the dendrimer, the high selectivity of the prepared compound toward benzoate is maintained even in the presence of aqueous media during extraction experiments. In the presence of binding sites at 5 mM concentration, the amount of benzoate corresponding to the full binding site occupancy is transferred into the chloroform phase from its 10 mM aqueous solution. A thorough investigation of the extraction behavior of the dendrimer reported here, supported by a series of molecular dynamics simulations, provides new insight into the fundamental principles of extraction of inorganic anions by amphiphiles.

6.
Carbohydr Polym ; 309: 120662, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36906374

RESUMO

Combining highly conducting one-dimensional nanostructures of polypyrrole with cellulose nanofibers (CNF) into flexible films with tailored electrical conductivity and mechanical properties presents a promising route towards the development of eco-friendly electromagnetic interference shielding devices. Herein, conducting films with a thickness of 140 µm were synthesized from polypyrrole nanotubes (PPy-NT) and CNF using two approaches, i.e., a new one-pot synthesis consisting of in situ polymerization of pyrrole in the presence of structure guiding agent and CNF, and a two-step synthesis, in which CNF and PPy-NT were physically blended. Films based on one-pot synthesis (PPy-NT/CNFin) exhibited higher conductivity than those processed by physical blending, which was further enhanced up to 14.51 S cm-1 after redoping using HCl post-treatment. PPy-NT/CNFin containing the lowest PPy-NT loading (40 wt%), thus the lowest conductivity (5.1 S cm-1), displayed the highest shielding effectiveness of -23.6 dB (>90 % attenuation), thanks to the good balance between its mechanical properties and electrical conductivity.

7.
Colloids Surf B Biointerfaces ; 221: 112954, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343477

RESUMO

Polydopamine (PDA) is one of the most commonly used materials for the preparation of protective adhesive layers for biomedical and tribological applications. Despite its widespread use, the way in which the polymer binds to the substrate is yet to be fully understood. At the nanometre level, the spatial arrangement of individual molecules and the initial growth of PDA layers are expected to be influenced by the utilized substrate material and PDA deposition time. To investigate these hypotheses, we have prepared PDA layers with various times of deposition on surfaces of gold and oxygen-terminated materials (silicon/silicon dioxide and nitrogen-doped titanium oxide). The prepared samples were subsequently analysed using a scattering-type scanning near-field optical microscope utilizing four irradiation energies in the mid-infrared region to detect the chemical contrast originating from vibrational modes of selected chemical moieties. It was found that the polymerization process leads to a formation of a surface confluent PDA layer and deposition of PDA nanoaggregates. The differences in the optical contrast observed at irradiation energies corresponding to the vibrations of indole units of PDA and quinoid groups of polymerization intermediates indicated a slightly different composition of the nanoaggregates and the surrounding confluent layer.


Assuntos
Indóis , Polímeros , Polímeros/química , Indóis/química , Polimerização , Adesivos/química
8.
Colloids Surf B Biointerfaces ; 205: 111897, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34118533

RESUMO

Polydopamine (PDA), also known as synthetic melanin, is widely used as a biomimetic anchoring layer for the modification of various solid substrates. PDA is utilized for a wide range of biomedical, sensing and tribological applications, even though the polymer's precise covalent structure has not been completely revealed yet. Even more, it is not evident to which extent the chemical nature of the substrate, on which the layer is formed, influences and predetermines the covalent structure of resulting PDA. In this contribution, we have studied the growth of PDA using various surface-sensitive techniques such as spectroscopic ellipsometry, atomic force microscopy and X-ray photoelectron spectroscopy. We supplemented grazing angle attenuated total reflection FTIR spectroscopy with multivariate statistical analysis to further gain analytical power. We have particularly focused on the effects of polymerization time and substrate on the PDA structure. We found notable differences in the chemical composition of PDA formed on gold and on surfaces terminated with oxides/reactive hydroxides such as silicon and N-dopped-TiO2 in the early stages of the layer formation. At the later stages of layer formation, a merely unified chemical structure was observed independently on the type of substrate.


Assuntos
Indóis , Polímeros , Polimerização , Propriedades de Superfície
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119142, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189978

RESUMO

Immobilization of nanoparticles (NPs) is a technique suitable for the preparation of large-scale substrates for surface-enhanced vibrational spectroscopy including micro- and nano-spectroscopic applications. The developed immobilization method provides the enhancing properties of the roughened substrate surface to be maintained for techniques like surface-enhanced Raman scattering (SERS) spectroscopy, however, at the same time the morphology is not limiting for related near-field (scanning probe) techniques. The study is focused on the comparison of different immobilization procedures of Ag nanoparticles and finding the relationship between preparation procedures leading to convenient surface morphology and the quality of the observed signal of the model analyte (riboflavin) using SERS. Amino-linker (3-aminopropyl)trimethoxysilane (APTMS) and four thio-linkers (cysteine, 3-mercaptopropanoic acid, 2-mercaptoethanol, and 2,2'-oxydiethanthiol) using five immobilization procedures at three different temperatures (23 °C, 40 °C, and 70 °C) were compared. Surface morphology was monitored by scanning electron microscopy and atomic force microscopy. The SERS spectra of riboflavin were evaluated in terms of the intensity and the resolution of individual bands. The spectral dataset was inspected by multivariate statistical methods - principal component analysis and discriminant analysis. The evaluation of spectra and statistical models show the influence of the used linker and AgNPs immobilization procedure on the spectral output. APTMS linker is less suitable; much more appropriate are thio-linkers deposited on an evaporated Au layer on a glass slide. The best spectral parameters were obtained for 2,2'-oxydiethanthiol and 23 °C.

10.
Int J Pharm ; 589: 119845, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931845

RESUMO

The preparation of an amorphous solid dispersion (ASD) is a promising strategy for improving the poor oral bioavailability of many active pharmaceutical ingredients (APIs). However, poor predictability of ASD long-term physical stability remains a prevalent problem. The purpose of this study was to evaluate and compare the predictive performance of selected models concerning solid-liquid equilibrium (SLE) curve and glass-transition temperature (Tg) line modeling of ibuprofen (IBU) in cellulosic polymers (i.e., hydroxypropyl methylcellulose (HPMC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS)). For SLE curve modeling, an empiricalanalyticalapproach(Kyeremateng et al., 2014)and the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) equation of state (EOS) were chosen. Due to the unavailability of PC-SAFT parameters for both polymers, an approximation procedure for parametrization was applied. The Gordon-Taylor equation and Kwei equation were considered for Tg line determination. The impact of various computational set-ups (e.g., model parametrization or extrapolation length) on IBU solubility prediction at storage conditions was thoroughly investigated, assessed and confronted with the results from an 18-month physical stability study. IBU developed stable 20 wt% API content ASDs with both HPMC and HPMCAS.The extrapolation behavior and subsequent ASD thermodynamic stability prediction at storage conditions deduced from the aforementioned models weresignificantly different. Overall, the PC-SAFT EOS predicted higher IBU solubility in both polymers and, thus, a lower recrystallization tendency when compared to the empirical analytical approach. At higherIBU concentrations, liquid-liquid demixing inIBU-polymer systems was predicted by the PC-SAFT EOS, which was in qualitative disagreement with experimental observation.


Assuntos
Química Farmacêutica , Excipientes , Estabilidade de Medicamentos , Derivados da Hipromelose , Metilcelulose , Solubilidade
11.
Micron ; 116: 1-4, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219738

RESUMO

Ion beam milling, as a method of surface design for tip analytical techniques, was explored. A sample of clay, embedded in a resin, was treated by the ion beam and allowed AFM (a typical tip technique) to be successfully applied. The method is suitable for advanced tip analyses based on AFM, like TERS or SNOM, and for samples that are not possible to prepare by standard mechanical methods. The approach can be useful for characterisation of the surfaces of many different types of materials in versatile applications such as catalysis, corrosion science or advanced material characterisation.

12.
Anal Chim Acta ; 1031: 1-14, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119727

RESUMO

Recent advances in nanotechnology have opened a lot of new possibilities for nanomaterials application in wide variety of industrial, pharmaceutical, medicinal and environmental applications. This review aims to description of various Fourier Transform Infrared (FTIR)-based spectroscopic techniques suitable to characterize (i) different types of nanomaterials and (ii) various macroscopic samples at their nanoscale. In the introductory section, nanomaterials are classified according to their crucial properties, i.e. chemical composition, size and surface morphology. Application of traditional FTIR techniques, such as Attenuated Total Reflection (ATR), Diffuse Reflection (DRIFT) and infrared micro (spectro)scopy, for characterization of nanomaterials and nanostructures is compared with novel optical nanoscopic techniques derived from scanning probe microscopy which enable to overcome the diffraction limit and to characterize nanomaterials at molecular scale.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 195: 236-245, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428644

RESUMO

Spectroscopy of surface-enhanced Raman scattering (SERS) is nowadays widely used in the field of bio-science and medicine. These applications require new enhancing substrates with special properties. They should be non-toxic, environmentally friendly and (bio-) compatible with examined samples. Flavonoids are natural antioxidants with many positive effects on human health. Simultaneously, they can be used as reducing agent in preparation procedure of plasmonic enhancing substrate for SERS spectroscopy. The best amplifiers of Raman vibrational spectroscopic signal are generally silver nanoparticles (AgNPs). In this study, several flavonoids (forming a logical set) were used as reducing agent in AgNPs preparation procedures. Reactivity of 10 structurally arranged flavonoids (namely flavone, chrysin, apigenin, luteolin, tricetin, 3-hydroxyflavone, galangin, kaempferol, quercetin and myricetin) was compared and SERS-activity of prepared AgNPs was tested using model analyte riboflavin. Riboflavin was detected down to concentration 10-9mol/l.


Assuntos
Flavonoides/química , Nanopartículas Metálicas/química , Riboflavina/análise , Riboflavina/química , Prata/química , Análise Espectral Raman/métodos
14.
Eur J Pharm Biopharm ; 116: 85-93, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28011092

RESUMO

The healing effects of silver and gold nanoparticles (AgNPs, AuNPs) are already known from ancient times. In addition considering to their antibacterial and anti-inflammatory effects speculations are being lead with respect to these nanoparticles (NPs) also about enhancement of skin penetration properties. In this work the interactions of pig skin (PS) layers and ointments with additions of AgNPs or AuNPs prepared by standard procedures and also by "green" synthesis in a different weight proportion by vibrational spectroscopy were studied. Spectra of untreated skin and skin treated by pure ointment were measured, as well as by ointment modified by vitamins without addition of NPs or with different proportion of NPs. Kinetics of interactions of modified ointments with skin was monitored during two hours with a five-minutes interval between each two consecutive measurements. The obtained series of spectra were analyzed by multivariate statistical methods namely Partial Least Squares (PLS), Principal Component Analysis (PCA) and Soft Independent Modelling of Class Analogy (SIMCA) which revealed observation of spectral changes in time-dependent spectra and variations of the peak intensity ratios. The study showed that the effects of quantity and type of NPs on skin penetration characteristics are evident.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Pele/metabolismo , Animais , Antibacterianos/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Ouro/administração & dosagem , Pomadas/administração & dosagem , Prata/administração & dosagem , Absorção Cutânea/efeitos dos fármacos , Análise Espectral/métodos , Suínos , Vitaminas/administração & dosagem
15.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763518

RESUMO

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Assuntos
Química Farmacêutica/métodos , Proteínas/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Epigênese Genética , Relação Estrutura-Atividade , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...