Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851557

RESUMO

The nucleocapsids (NCs) of the respiratory syncytial virus (RSV) can display multiple morphologies in vivo, including spherical, asymmetric, and filamentous conformations. Obtaining homogeneous ring-like oligomers in vitro is significant since they structurally represent one turn of the characteristic RSV NC helical filament. Here, we analyzed and optimized conditions for forming homogenous, recombinant nucleocapsid-like particles (NCLPs) of RSV in vitro. We examined the effects of modifying the integrated RNA length and sequence, altering incubation time, and varying buffer parameters, including salt concentration and pH, on ring-like NCLPs assembly using negative stain electron microscopy (EM) imaging. We showed that high-quality, homogeneous particles are assembled when incubating short, adenine-rich RNA sequences with RNA-free N associated with P (N0P). Further, we reported that a co-incubation duration greater than 3 days, a NaCl concentration between 100 mM and 200 mM, and a pH between 7 and 8 are optimal for N-RNA ring assembly with polyadenine RNA sequences. We believe assembling high-quality, homogeneous NCLPs in vitro will allow for further analysis of RSV RNA synthesis. This work may also lend insights into obtaining high-resolution nucleocapsid homogeneous structures for in vitro analysis of antiviral drug candidates against RSV and related viruses.


Assuntos
Vírus Sincicial Respiratório Humano , Vírus Sincicial Respiratório Humano/genética , Vírion , Nucleocapsídeo , Adenina , Antivirais/farmacologia , RNA , Cloreto de Sódio
2.
J Artif Organs ; 24(3): 312-319, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33740155

RESUMO

Left ventricular assist device (LVAD) implantations have traditionally been approached through a full median sternotomy (FS). Recently, a minimally invasive left thoracotomy (LT) approach has been popularized. This study sought to compare the outcomes of FS and LT patients post-primary LVAD implantation and post-subsequent heart transplant (HT). This was a single-center retrospective study. 83 patients who underwent primary centrifugal durable LVAD implantation from January 2014 to June 2018 were included (FS, n = 41; LT, n = 42). 41 patients had a subsequent HT (FS, n = 19; LT, n = 22). Pre-operative patient demographics, intraoperative variables, post-operative 1-year survival, length of hospital stay, complications, and outcomes for LVAD implantation and following HT were analyzed. Intraoperative data showed that the LT group had a 23.4% longer mean LVAD implant surgical time (p < 0.01). One-year post-LVAD survival was similar between the two groups (p = 0.05). Complication rates, with the exception of the rate of hemorrhagic stroke (p = 0.04) post-LVAD implant were similar. One-year survival post-HT was similar between groups (p = 0.35). Complication rates and mean length of hospital stay were also similar (p = 1.0) post-HT. Our study demonstrated that LT approach does not negatively affect post-LVAD implantation or post-HT outcomes. Further, larger studies may determine more detailed effects of LT approach.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Insuficiência Cardíaca/cirurgia , Humanos , Implantação de Prótese , Estudos Retrospectivos , Esternotomia/efeitos adversos , Toracotomia , Resultado do Tratamento
4.
Stem Cell Investig ; 4: 62, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815173

RESUMO

Psychiatric disorders are a problem for society both on a micro level involving patients and their families as well as on a macro level involving global economic costs. For years, scientists have relied on mouse models for research, but these have shortcomings that greatly hinder efforts to understand the pathophysiology and genetic factors of psychiatric disorders. Induced pluripotent stem cells (iPSCs) have shown potential to overcome obstacles that mouse models face and can provide patient-specific cells that allow for better understanding of genetic effects on psychiatric disorders. This review explores the current progress using iPSCs to model psychiatric disorders, specifically bipolar disorder and schizophrenia, while discussing remaining issues with iPSC use and how these issues can be resolved in the future.

5.
J Neurotrauma ; 33(4): 403-22, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26414413

RESUMO

Mild traumatic brain injury (TBI) from focal head impact is the most common form of TBI in humans. Animal models, however, typically use direct impact to the exposed dura or skull, or blast to the entire head. We present a detailed characterization of a novel overpressure blast system to create focal closed-head mild TBI in mice. A high-pressure air pulse limited to a 7.5 mm diameter area on the left side of the head overlying the forebrain is delivered to anesthetized mice. The mouse eyes and ears are shielded, and its head and body are cushioned to minimize movement. This approach creates mild TBI by a pressure wave that acts on the brain, with minimal accompanying head acceleration-deceleration. A single 20-psi blast yields no functional deficits or brain injury, while a single 25-40 psi blast yields only slight motor deficits and brain damage. By contrast, a single 50-60 psi blast produces significant visual, motor, and neuropsychiatric impairments and axonal damage and microglial activation in major fiber tracts, but no contusive brain injury. This model thus reproduces the widespread axonal injury and functional impairments characteristic of closed-head mild TBI, without the complications of systemic or ocular blast effects or head acceleration that typically occur in other blast or impact models of closed-skull mild TBI. Accordingly, our model provides a simple way to examine the biomechanics, pathophysiology, and functional deficits that result from TBI and can serve as a reliable platform for testing therapies that reduce brain pathology and deficits.


Assuntos
Pressão do Ar , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Modelos Animais de Doenças , Explosões , Crânio/lesões , Animais , Concussão Encefálica/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...