Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543615

RESUMO

Brevibacillus laterosporus (B. laterosporus) is widely distributed in nature and demonstrates significant potential for applications in biological control, environmental protection, agricultural production, and clinical medicine. This review provides a comprehensive overview of the applications of B. laterosporus in crop cultivation and animal feeding, as well as an examination of the antimicrobial peptides produced by B. laterosporus and their antibacterial mechanisms. B. laterosporus enhances crop cultivation by secreting hydrolases to improve nutrient absorption capabilities, synthesizing hormones to promote crop growth, and producing proteins to inhibit the reproduction of harmful organisms. B. laterosporus has been used to improve animal production by regulating the structure of the intestinal microbiota and inhibiting the growth of pathogenic bacteria through the secretion of various antimicrobial peptides. The bactericidal activity of Brevilaterins secreted by B. laterosporus is attributed to their ability to bind to lipopolysaccharide/lipid II molecules on the cell membrane, thereby altering permeability. Brevilaterins also inhibit bacterial reproduction by affecting relevant gene pathways in the cell membranes of pathogenic bacteria. These pathways include ATP synthesis, peptidoglycan biosynthesis, membrane transport, and cellular metabolism. In conclusion, B. laterosporus exhibits substantial potential as a probiotic activity in crop and animal production. However, applications of B. laterosporus in animal production could be improved, necessitating further research to elucidate the underlying probiotic mechanisms.

2.
J Hazard Mater ; 467: 133423, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38359760

RESUMO

Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.


Assuntos
Lignanas , Microbiota , Escatol , Suínos , Animais , Humanos , Escatol/metabolismo , Triptofano/metabolismo , Compostos de Bifenilo
3.
Analyst ; 148(21): 5390-5394, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37750310

RESUMO

Dichloroacetonitrile (DCAN) is a common biotoxic disinfection by-product (DBP) of chlorine. The current methods used for detecting DCAN are tedious and heavily instrument-dependent, and are not suitable for on-site detection. In the present study, we developed a colorimetric assay for rapid detection of DCAN. DCAN in water acted as a complexing agent that formed a complex with cuprous species. The cuprous species was then extracted by chloroform and visualized using dithizone. The visual detection limit for DCAN was 20 ng mL-1, while fluorescence quantification could detect DCAN at a concentration as low as 8.75 ng mL-1. Moreover, haloacetonitriles (HANs) derived from chlorine disinfection and structurally similar to DCAN, including TCAN, BCAN, and DBAN, could also be detected using this method. Other DBPs at concentrations as high as 200 ng mL-1 did not affect the detection process. The low cost and instrument-independence characteristic of the present method enables its routine determination of the concentration of DCAN in water.

4.
Animals (Basel) ; 13(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37238056

RESUMO

This study aims to investigate the effects of guanidine acetic acid (GAA) on carcass traits, plasma biochemical parameters, tissue antioxidant capacity, and tissue-bound amino acid contents in finishing pigs. Seventy-two 140-day-old (body weight 86.59 ± 1.16 kg) crossbred pigs (Duroc × Landrace × Large White) were randomly assigned into four treatments with six replicate pens and three pigs per pen, which were fed the basal diets supplemented with 0, 0.05%, 0.10%, or 0.15% GAA, respectively. The plasma glucose concentration decreased, and creatine kinase activity and levels of GAA and creatine increased with the dietary GAA concentration. GAA linearly improved creatine content in the longissimus thoracis muscle (LM) and heart. The activities of superoxide dismutase, total antioxidant capacity, and glutathione peroxidase increased linearly in tissue or/and plasma, while the contents of malondialdehyde and protein carbonyl decreased linearly. GAA improved the contents of multiple-bound amino acids (such as proline or isoleucine) in the myocardium and LM. In conclusion, GAA enhanced the plasma biochemical parameters, oxidative status, and bound amino acid profiles of the heart and LM in finishing pigs.

5.
J Environ Manage ; 330: 117060, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587550

RESUMO

Chrysanthemum waste (CW) is an agricultural and industrial by-product produced during chrysanthemum harvesting, drying, preservation, and deep processing. Although it is nutritious, most CW is discarded, wasting resources and contributing to serious environmental problems. This work explored a solid-state fermentation (SSF) strategy to improve CW quality for use as an alternative feed ingredient. Orthogonal experiment showed that the optimal conditions for fermented chrysanthemum waste (FCW) were: CW to cornmeal mass ratio of 9:1, Pediococcus cellaris + Candida tropicalis + Bacillus amyloliquefaciens proportions of 2:2:1, inoculation amount of 6%, and fermentation time of 10 d. Compared with the control group, FCW significantly increased the contents of crude protein, ether extract, crude fiber, acid detergent fiber, neutral detergent fiber, ash, calcium, phosphorus, and total flavonoids (p < 0.01), and significantly decreased pH and saponin content (p < 0.01). SSF improved the free and hydrolyzed amino acid profiles of FCW, increased the content of flavor amino acids, and improved the amino acid composition of FCW protein. Overall, SSF improved CW nutritional quality. FCW shows potential use as a feed ingredient, and SSF helps reduce the waste of chrysanthemum processing.


Assuntos
Aminoácidos , Detergentes , Fermentação , Amido , Ração Animal/análise
6.
J Sci Food Agric ; 103(3): 1561-1568, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36214060

RESUMO

BACKGROUND: Mulberry leaf extract (MLE) extracted from mulberry leaves is rich in a variety of bioactive ingredients and can be used as feed additives of weaned piglets. The present study was conducted to evaluate the effects of dietary MLE supplementation on intestinal barrier function, colon microbial numbers and microbial metabolites of weaned piglets. RESULTS: MLE supplementation increased the villus height and the villus height/crypt depth ratio in jejunum and ileum (P < 0.05), increased the mRNA expression of ZO-1, Claudin-1 and MUC-2 in the ileal mucosa (P < 0.05), and decreased the serum level of lipopolysaccharide (P < 0.01). Meanwhile, MLE reduced the mRNA expression of tumor necrosis factor-α and interleukin-1ß (P < 0.05) and increased secretory immunoglobulin A level in the ileal mucosa (P < 0.05). In addition, MLE increased the numbers of beneficial bacteria Bifidobacterium and Lactobacillus (P < 0.05) and decreased the number of potential pathogenic bacteria Escherichia coli (P < 0.05) in the colon. Correspondingly, MLE supplementation reduced the pH value of colonic digesta (P < 0.05) and altered the microbial fermentation pattern of the colon by increasing the concentrations of microbial metabolites derived from carbohydrates fermentation such as lactate, acetate, butyrate and total short-chain fatty acids (P < 0.05), and decreasing the concentrations of microbial metabolites derived from amino acid fermentation such as p-cresol, skatole, spermine, histamine and tryptamine (P < 0.05). CONCLUSION: MLE supplementation improved intestinal barrier function and displayed beneficial effects on colon microbes and microbial metabolism in weaned piglets. © 2022 Society of Chemical Industry.


Assuntos
Microbiota , Morus , Animais , Suínos , Suplementos Nutricionais/análise , Morus/metabolismo , Colo/metabolismo , Mucosa Intestinal/metabolismo , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , RNA Mensageiro/metabolismo , Desmame
7.
Foods ; 12(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38231615

RESUMO

The carbon footprint of pork production is a pressing concern due to the industry's significant greenhouse gas emissions. It is crucial to achieve low-carbon development and carbon neutrality in pork production. Thus, this paper reviewed the recent studies about various sources of carbon emissions throughout the current pork production chain; feed production, processing, and manure management are the major sources of carbon emissions. The carbon footprint of the pork production chain varies from 0.6 to 6.75 kg CO2e·kg-1 pig live weight, and the carbon footprint of 1 kg of pork cuts is equivalent to 2.25 to 4.52 kg CO2e. A large reduction in carbon emissions could be achieved simultaneously if combining strategies of reducing transportation distances, optimizing farmland management, minimizing chemical fertilizer usage, promoting organic farming, increasing renewable energy adoption, and improving production efficiency. In summary, these mitigation strategies could effectively decrease carbon emissions by 6.5% to 50% in each sector. Therefore, a proper combination of mitigation strategies is essential to alleviate greenhouse gas emissions without sacrificing pork supply.

8.
Front Nutr ; 9: 1050025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505236

RESUMO

Scope: Probiotics are a potential preventive strategy for obesity. However, with discrete efficacy and limited species of probiotics, there is a demand for novel strains with excellent anti-obesity properties. This study aimed to investigate the effects of Brevibacillus laterosporus BL1 on preventing obesity in high-fat diet (HFD)-fed mice. Methods and results: C57BL/6 male mice were randomly assigned to four groups (n = 10) and fed a control diet, HFD, HFD plus B. laterosporus BL1, and HFD plus supernatant of B. laterosporus BL1, respectively for 8 weeks. The results showed that prophylactic B. laterosporus BL1 treatment reduced body weight gain by 41.26% in comparison to the HFD group, and this difference was accompanied by a reduction in body fat mass and the weight of inguinal white adipose tissues and epididymal white adipose tissue (-33.39%, -39.07%, and -43.75%, respectively). Moreover, the B. laterosporus BL1-mediated improvements in lipid profile, insulin resistance, and chronic inflammation were associated with the regulation of gene expression related to lipid metabolism and enhancement of brown adipose tissue thermogenesis. Particularly, B. laterosporus BL1 intervention significantly improved HFD-induced gut flora dysbiosis, as evidenced by a reverse in the relative abundance of Bacillota and Bacteroidota, as well as an increase in the relative abundance of bacteria that produce short-chain fatty acids (SCFAs), which in turn increased SCFAs levels. Conclusion: Our findings found for the first time that B. laterosporus BL1 may be a promising probiotic for prevention of obesity associated with the regulation of gut microbiota.

9.
J Anim Sci Biotechnol ; 13(1): 73, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672805

RESUMO

BACKGROUND: Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, is the main medicinal component of bear bile and is commonly used to treat a variety of hepatobiliary diseases. Meanwhile, TUDCA has been shown to modulate the intestinal barrier function and alleviate DSS-induced colitis in mice. However, the effect of TUDCA on the intestinal barrier of weaned piglets remains largely unclear. METHODS: The weaned piglets and porcine IPEC-J2 intestinal epithelial cells were used to investigate the effects of TUDCA on intestinal barrier function in weaned piglets and explore the possible underlying mechanisms. In vivo, 72 healthy weaned piglets were randomly allocated into 2 groups according to their gender and body weight, and piglets were fed the basal diet with 0 (control, CON) and 200 mg/kg TUDCA for 30 d, respectively. Three female and three male piglets reflecting the average bodyweight were slaughtered in each group and samples were collected. In vitro, IPEC-J2 cells were subjected to 100 µmol/L TUDCA to explore the possible underlying mechanisms. RESULTS: Our results demonstrated that dietary TUDCA supplementation significantly reduced the diarrhea incidence of weaned piglets, possibly attributing to the TUDCA-enhanced intestinal barrier function and immunity. In addition, TUDCA supplementation altered serum metabolites and the relative abundance of certain gut bacteria, which might contribute to the improved intestinal barrier function. Furthermore, the in-vitro results showed that TUDCA improved the E. coli-induced epithelial barrier impairment of IPEC-J2 cells and increased Takeda G-coupled protein receptor 5 (TGR5) protein expression. However, knockdown of TGR5 and inhibition of myosin light chain kinase (MLCK) pathway abolished the TUDCA-improved epithelial barrier impairment in E. coli-treated IPEC-J2 cells, indicating the involvement of TGR5-MLCK in this process. CONCLUSIONS: These findings showed that TUDCA improved intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets, suggesting the potential application of TUDCA in improving gut health in piglet production.

10.
Porcine Health Manag ; 8(1): 24, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672811

RESUMO

BACKGROUND: As a nutritive feed additive, guanidine acetic acid (GAA) participates in the metabolism of energy and proteins. This study aimed to investigate the effects of GAA on growth performance, organ index, plasma and tissue free amino acid profiles, and related metabolites in finishing pigs. A total of 72 crossbred pigs (body weight 86.59 ± 1.16 kg) were randomly assigned to 1 of 4 dietary treatments (GAA0, GAA500, GAA1000, and GAA1500). They were fed the basal diets supplemented with 0, 500, 1000, or 1500 mg/kg GAA for 42 days, respectively. The growth performance and organ weight were evaluated, and the contents of crude protein, free amino acids, and metabolites in plasma and tissues were determined. Spearman correlation between plasma and tissue free amino acids and related metabolites was also analyzed. RESULTS: Growth performance in pigs was not altered by GAA (P > 0.05). The absolute and relative weight of kidneys increased (quadratic, P < 0.05). As dietary GAA concentration was increased, the contents of plasma glycine, serine, leucine, ornithine, and ratio of ornithine/arginine decreased (linear or quadratic, P < 0.05), but the contents of plasma isoleucine and taurine and the ratios of alanine/branched-chain amino acids and proline/ornithine increased quadratically (P < 0.05). The hepatic γ-amino-n-butyric acid content increased linearly and quadratically (P < 0.001), while the carnosine content decreased (quadratic, P = 0.004). The contents of renal arginine, proline, cystine, glutamate, and total amino acids (TAA) decreased quadratically (P < 0.05), but the contents of glycine (quadratic, P = 0.015) and γ-amino-n-butyric acid (linear, P = 0.008) increased. The pancreatic tryptophan content (quadratic, P = 0.024) increased, while the contents of pancreatic proline (linear, P = 0.005) and hydroxyproline (quadratic, P = 0.032) decreased in response to GAA supplementation. The contents of cardiac essential amino acids (EAA), nonessential amino acids (NEAA), and TAA in GAA1000 were higher than those in GAA1500 (P < 0.05). Supplementing with GAA linearly increased the contents of methionine, threonine, valine, isoleucine, leucine, phenylalanine, tryptophan, lysine, histidine, arginine, serine, alanine, glutamine, asparagine, tyrosine, proline, taurine, cystathionine, α-aminoadipic acid, ß-aminoisobutyric acid, EAA, NEAA, and TAA in the spleen (P < 0.05). A strong Spearman correlation existed between plasma and tissue free amino acids and related metabolites. CONCLUSION: GAA supplementation did not altered pig growth performance, but it altered plasma and tissue free amino acid profiles and the contents of related metabolites in pigs in a tissue-dependent manner.

11.
Biology (Basel) ; 11(5)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625502

RESUMO

Aflatoxin B1 (AFB1) is one of the most toxic, naturally occurring carcinogen compounds and is produced by specific strains of fungi. Crop contamination with AFB1 can cause huge economic losses and serious health problems. Many studies have examined the microbiological degradation of AFB1, especially the use of efficient AFB1-degrading microorganisms, to control AFB1 contamination. Here, we reported the identification of a new Rhodococcus pyridinivorans strain (4-4) that can efficiently degrade AFB1 (degradation rate 84.9%). The extracellular component of this strain showed the strongest capacity to degrade AFB1 (degradation rate 83.7%). The effects of proteinase K, SDS, temperature, pH, incubation time, and AFB1 concentration on the AFB1 degradation ability of the extracellular component were investigated. We sequenced the complete genome of this strain, encoding 5246 protein-coding genes and 169 RNA genes on a circular chromosome and two plasmids. Comparative genomic analysis revealed high homology with other Rhodococcus strains with high AFB1-degradation ability. Further proteomic analyses of this strain identified a total of 723 proteins in the extracellular component, including multiple potential AFB1-degrading enzymes, along with enzymes that are reported to response to AFB1 treatment. Overall, the results demonstrate that R. pyridinivorans 4-4 would be an excellent candidate for the biodegradation and detoxification of AFB1 contamination.

12.
Front Nutr ; 9: 881371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634396

RESUMO

Aims: Small peptides are more energy-saving and efficiently absorbed compared to amino acids. Our study aimed to evaluate the effect of the Lys-Lys dipeptide on the improvement of growth performance, amino acid metabolism, and gut development in suckling piglets. Methods and Results: Twenty-eight newborn suckling piglets were orally administrated with 0.1%, 1%, and 5% Lys-Lys dipeptide for 21 days. Our results showed that the Lys-Lys dipeptide has no significant effect on growth performance and intestinal morphology compared with the control group. We also found that the 1% Lys-Lys dipeptide significantly increased the concentrations of serum Lys, Thr, Phe, and Pro while decreasing Cys compared to the control group. Similarly, the 5% Lys-Lys dipeptide markedly increased the concentrations of serum Lys, Iso, Thr, Asp, Glu, and Pro compared to the control group. Moreover, the Lys-Lys dipeptide downregulated the expression of jejunal Slc7a1, Slc7a2, and Slc15a1 and ileal Slc7a2. Additionally, the Lys-Lys dipeptide decreased the microbiota richness indices and relative abundance of Bacteroidales. Conclusion: In this study, we found that the Lys-Lys dipeptide contributes to the metabolism of amino acids but failed to affect the growth performance of piglets. Additionally, the Lys-Lys dipeptide decreased the relative abundance of Bacteroidales. These results provide a theoretical for the future application and research of Lys-Lys dipeptide in intestinal development of suckling piglets.

13.
J Hazard Mater ; 434: 128890, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452978

RESUMO

Indole is an inter-species and inter-kingdom signaling molecule widespread in the natural world. A large amount of indole in livestock wastes makes it difficult to be degraded, which causes serious malodor. Identifying efficient and eco-friendly ways to eliminate it is an urgent task for the sustainable development of husbandry. While bioconversion is a widely accepted means, the mechanism of indole microbial degradation is little understood, especially under anaerobic conditions. Herein, a new Enterococcus hirae isolate GDIAS-5, effectively degraded 100 mg/L indole within 28 h aerobically or 5 days anaerobically. Three intermediates (oxindole, isatin, and catechol) were identified in indole degradation, and catechol was further degraded by a meta-cleavage catabolic pathway. Two important processes for GDIAS-5 indole utilization were discovered. One is Fe(III) uptake and reduction, which may be a critical process that is coupled with indole oxidation, and the other is the entire pathway directly involved in indole oxidation and metabolism. Furthermore, monooxygenase ycnE responsible for indole oxidation via the indole-oxindole-isatin pathway was identified for the first time. Bioinformatic analyses showed that ycnE from E. hirae formed a phylogenetically separate branch from monooxygenases of other species. These findings provide new targets and strategies for synthetic biological reconstruction of indole-degrading bacteria.


Assuntos
Streptococcus faecium ATCC 9790 , Isatina , Bactérias/metabolismo , Catecóis , Streptococcus faecium ATCC 9790/metabolismo , Compostos Férricos , Indóis/metabolismo , Oxindóis
14.
Molecules ; 27(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35458611

RESUMO

The accumulation of reactive oxygen species (ROS) triggers oxidative stress in cells by oxidizing and modifying various cellular components, preventing them from performing their inherent functions, ultimately leading to apoptosis and autophagy. Glutathione (GSH) is a ubiquitous intracellular peptide with multiple functions. In this study, a hydrogen peroxide (H2O2)-induced oxidative damage model in IPEC-J2 cells was used to investigate the cellular protection mechanism of exogenous GSH against oxidative stress. The results showed that GSH supplement improved the cell viability reduced by H2O2-induced oxidative damage model in IPEC-J2 cells in a dose-dependent manner. Moreover, supplement with GSH also attenuated the H2O2-induced MMP loss, and effectively decreased the H2O2-induced mitochondrial dysfunction by increasing the content of mtDNA and upregulating the expression TFAM. Exogenous GSH treatment significantly decreased the ROS and MDA levels, improved SOD activity in H2O2-treated cells and reduced H2O2-induced early apoptosis in IPEC-J2 cells. This study showed that exogenous GSH can protect IPEC-J2 cells against apoptosis induced by oxidative stress through mitochondrial mechanisms.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Apoptose , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Animals (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405818

RESUMO

This experiment was conducted to investigate the effects of maternal catalase (CAT) supplementation on reproductive performance, antioxidant enzyme activities, mineral transport, and mRNA expression of related genes in sows and offspring. A total of 40 pregnant sows at 95 days of gestation with similar parity (3−5 parities) and back-fat thickness were assigned randomly and equally into the control (CON) group (fed a basal diet) and CAT group (fed a basal diet supplemented with 660 mg/kg CAT; CAT activity, 280 U/g). The reproductive performance was recorded, and the placenta and blood samples of sows and neonatal piglets, as well as the jejunum and ileum samples from neonatal boars (eight replicates per group), were collected. Results showed that dietary supplementation with CAT significantly decreased the intrauterine growth restriction (IUGR) rate and increased the activity of serum CAT in neonatal piglets and umbilical cords (p < 0.05). In addition, CAT supplementation tended to improve total antioxidant capacity (T-AOC) levels in the maternal serum (p = 0.089) and umbilical cords of piglets (p = 0.051). The serum calcium (Ca), manganese (Mn), and zinc (Zn) of farrowing sows and Mn concentration in the umbilical cord, and serum Ca, magnesium (Mg), copper (Cu), and Mn of neonatal piglets were significantly increased (p < 0.05) in the CAT group. CAT supplementation downregulated mRNA expression of TRPV6 and CTR1 (p < 0.05), Cu/Zn SOD (p = 0.086) in the placenta and tended to increase the mRNA expression of the glutathione peroxidase 1 (GPX1) (p = 0.084), glutathione peroxidase 4 (GPX4) (p = 0.063), and CAT (p = 0.052) genes in the ileum of piglets. These results showed that the maternal CAT supplementation improved fetal growth by decreasing the IUGR rate, and modulated antioxidant activity, as well as mineral elements in the pregnant sows and their piglets.

16.
Food Res Int ; 154: 110951, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337551

RESUMO

This study integrated metagenomics and metabolomics to evaluate the effects of diets with different starch sources on the microbial community, metabolic functions, and resultant metabolites in the cecum of finishing pigs. In this study, 48 crossbred growing barrows were randomly allocated to 2 treatment groups with eight replicate pens of 3 pigs each. Pigs were fed a tapioca starch (TS) diet or a pea starch (PS) diet (the ratio between amylose and amylopectin of the two diets were 0.11 and 0.44, respectively) for 44 days. The results showed that, compared with the TS diet, the PS diet increased (P < 0.05) the relative abundance of amylolytic bacteria, such as Lactobacillus spp., and Streptococcus spp., and decreased (P < 0.05) the relative abundance of some inflammatory bacteria, such as Tyzzerella, Porphyromonas, and Tannerella in the cecum of pigs. In addition, analysis of microbial functions showed that 11 carbohydrate-active enzymes, such as GH73, AA3, and AA6, were enriched in the PS group (P < 0.05), while 26 other enzymes, such as GH2, GH35, and GH53, were enriched in the TS group (P < 0.05). Meanwhile, KEGG pathway analysis showed a decreasing trend (P < 0.1) for energy metabolism and amino acid metabolism pathways, and a significant increase (P < 0.05) in the lipid metabolism pathways in the PS group. Correspondingly, the resultant metabolites related to amino acids and their derivatives (such as decreased histamine and indole, while increased γ-aminobutyric acid and pyroglutamic acid), and fatty acids and lipids (such as increased tetradecanoylcarnitine and monoacylglycerol) were also changed (P < 0.05) in the cecum of pigs fed the PS diet. In summary, these findings indicated that the cecal microbiota and metabolism underwent responsive changes to diets with different starch sources, and a high ratio of amylose to amylopectin in diets may be beneficial to intestinal health of pigs.


Assuntos
Ração Animal , Amido , Ração Animal/análise , Animais , Ceco/microbiologia , Dieta/veterinária , Metabolômica , Metagenômica , Amido/química , Suínos
17.
J Anim Physiol Anim Nutr (Berl) ; 106(4): 813-824, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34448260

RESUMO

This study investigated the effects of citrus extract on growth, carcass and meat quality of Duroc × Landrace × Large White pigs. One hundred and eight pigs (54 barrows, 54 females) were assigned to one of three dietary treatments for 138 days. The dietary treatments were (1) basic diet; (2) basic diet supplemented with 75 mg/kg chlortetracycline; and (3) basic diet supplemented with citrus extract (0.25 ml/kg during 56-112 days of age and 0.20 ml/kg during 113-194 days of age). No significant differences among treatments were found for growth performance, carcass characteristics, meat quality and free amino acids (p > 0.05). Feeding citrus extract tended to increase intramuscular fat (p = 0.052). Citrus extract and chlortetracycline increased C15:0 concentration (p = 0.016) and superoxide dismutase activity (p = 0.004). The pigs that received chlortetracycline exhibited the lowest (p = 0.033) muscle malondialdehyde concentration. Overall, citrus extract ameliorated some meat quality indicators without adverse effects on pig growth or carcass performance.


Assuntos
Clortetraciclina , Citrus , Ração Animal/análise , Animais , Composição Corporal , Clortetraciclina/farmacologia , Dieta/veterinária , Feminino , Carne/análise , Suínos
18.
PLoS One ; 16(11): e0260045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767609

RESUMO

This study evaluated the ability of Aspergillus niger and Trichoderma koningii to improve the quality of tea dregs (TDs) through solid-state fermentation as well as the value of the fermented tea dregs (FTDs) produced for use as bio-feed additives. After fermentation, FTDs differed in color and structure. Fermentation with A. niger and T. koningii increased the contents of crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of TDs. Compared to the unfermented group, the contents of reducing sugar, total flavonoids, total polyphenols, and theasaponins were increased in A. niger FTDs, while in T. koningii FTDs caffeine was completely degraded, the theasaponins were lower, and the contents of reducing sugar and caffeine higher. Regarding free amino acids, A. niger FTDs had the highest content of total amino acids, total essential amino acids, total non-essential amino acids, total aromatic amino acids, total branched-chain amino acids, and total non-protein amino acids, and all types of essential amino acids, followed by T. koningii FTDs and the control TDs. Fungal fermentation had similar effects on the content of various hydrolytic amino acids as those on above free amino acids, and increased the content of bitter and umami components. The composition of essential amino acids of TDs or FTDs was similar to that of the standard model, except for sulfur-containing amino acids and isoleucine. Solid-state fermentation with A. niger and T. koningii effectively improved the nutritional value of TDs, increased the contents of functional substances, and improved the flavor of TDs. This study demonstrated a feasible approach to utilize TDs that not only increases animal feed resources, but also reduces the production of resource waste and pollution.


Assuntos
Aspergillus niger , Fermentação , Aspergillus , Hypocreales
19.
Front Microbiol ; 12: 762467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975787

RESUMO

Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.

20.
Food Sci Nutr ; 8(10): 5650-5659, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133567

RESUMO

This study aimed to assess the efficacy of fermented okara on performance and meat quality, and to explore the feasibility of its partial substitution for corn-soybean meal in pig production. A total of 48 pigs (Duroc × Landrace × Yorkshire) with an average body weight of 58.60 ± 0.65 kg were randomly assigned to 2 groups, Control group and Fermented okara (FO) group. There were 8 replicate pens each with 3 pigs per treatment. Control pigs were fed a corn-soybean meal basal diet, treatment pigs were fed a basal diet supplemented with FO throughout the 55-d experimental period. Results showed that fermentation of okara using probiotics increased its microporous structure, polysaccharides, lactic acid, and free amino acids (FAA) by 46.06%, 150%, and 66.45% compared with unfermented okara, respectively (p < .05). The diet supplemented with FO significantly improved average daily gain (ADG) by 8.70% (p < .01), but decreased the feed gain ratio (F/G) by 5.56% of growing pigs compared to the control diet (p < .05). Furthermore, dietary FO improve meat color, FAA, and the activity of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-PX) in the serum and muscles (p < .05). Collectively, probiotics-fermented okara improved growth performance, meat quality and antioxidant capacity, and it can be used to substitute partial corn-soybean meal in pig industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...