Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 564, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033113

RESUMO

OBJECTIVE: The objective of this study was to investigate the initial stability of different screw placements in arthroscopic anterior cruciate ligament (ACL) tibial avulsion fracture fixation. METHODS: A three-dimensional knee model at 90° flexion was utilized to simulate type III ACL tibial avulsion fracture and arthroscopic screw fixation through different portals, namely the central transpatellar tendon portal (CTP), anterolateral portal (ALP), anteromedial portal (AMP), lateral parapatellar portal (LPP), medial parapatellar portal (MPP), lateral suprapatellar portal (LSP), medial suprapatellar portal (MSP). A shear force of 450 N was applied to the finite element models at 30° flexion to simulate the failure condition. The displacement of the bony fragment and the volume of the bone above 25,000 µ-strain (damaged bone volume) were calculated around the screw path. RESULTS: When the screw was implanted through CTP, the displacement of the bony fragment reached the maximum displacement which was 1.10 mm and the maximum damaged bone volume around the screw path was 148.70 mm3. On the other hand, the minimum displacement of the bony fragment was 0.45 mm when the screw was implanted through LSP and MSP. The minimum damaged bone volume was 14.54 mm3 around the screw path when the screw was implanted through MSP. CONCLUSION: Screws implanted through a higher medial portal generated less displacement of the bony fragment and a minimum detrimental strain around the screw path. The findings are clinically relevant as they provide biomechanical evidence on optimizing screw placement in arthroscopic ACL tibial avulsion fracture fixation.


Assuntos
Artroscopia , Parafusos Ósseos , Análise de Elementos Finitos , Fixação Interna de Fraturas , Fratura Avulsão , Fraturas da Tíbia , Humanos , Fraturas da Tíbia/cirurgia , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/fisiopatologia , Artroscopia/métodos , Fixação Interna de Fraturas/métodos , Fixação Interna de Fraturas/instrumentação , Fratura Avulsão/cirurgia , Fratura Avulsão/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Fenômenos Biomecânicos , Ligamento Cruzado Anterior/cirurgia , Ligamento Cruzado Anterior/fisiopatologia
2.
Spine J ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38843954

RESUMO

BACKGROUND CONTEXT: Thread shape is regarded as an important factor influencing the fixation strength and osseointegration of bone screws. However, commercial pedicle screws with a V-shaped thread are prone to generating stress concentration at the bone-screw interface, thereby increasing the risk of screw loosening. Thus, modification of the pedicle-screw thread is imperative. PURPOSE: This study aimed to investigate the fixation stability of pedicle screws with the new undercut thread design in comparison to pedicle screws with a V-shaped thread. STUDY DESIGN: In vitro cadaveric biomechanical test and finite element analysis (FEA). METHODS: Pedicle screws with the undercut thread (characterized by a flat crest feature and a tip-facing undercut feature) were custom-manufactured, whereas those with the V-shaped thread were procured from a commercial supplier. Fixation stability was assessed by the cyclic nonpullout compressive biomechanical testing on cadaveric female osteoporotic vertebrae. The vertical displacement and rotation angle of the 2 types of pedicle screws were calculated every 100 cycles to evaluate their resistance to migration and rotation. FEA was conducted to investigate the stress distribution and bone damage at the bone-screw interface for both types of pedicle screws. RESULTS: Biomechanical testing revealed that the pedicle screws with the undercut thread exhibited significantly lower vertical displacement and rotation angles than the pedicle screws with the V-shape thread (P < 0.05). FEA results demonstrated a more uniform stress distribution in the bone surrounding the thread in the undercut design than in the V-shape design. Additionally, bone damage resulting from the pedicle screw was lower in the undercut design than in the V-shape design. CONCLUSIONS: Pedicle screws with an undercut thread are less prone to migration and rotation and thus more stable in the bone than those with a V-shape thread. CLINICAL SIGNIFICANCE: The undercut thread design may reduce the incidence of pedicle-screw loosening.

3.
J Orthop Surg Res ; 19(1): 212, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561786

RESUMO

BACKGROUND: Osteoporosis (OP) is the result of bone mass reduction and bone structure disorder. Bone marrow mesenchymal stem cells (BMSCs) are the main source of osteogenic precursor cells involved in adult bone remodeling. The involvement of the deubiquitinating enzyme CYLD in OP has recently been discovered. However, the detailed role and mechanism of CYLD remain unknown. METHODS: The OP mouse model was established by performing ovariectomy (OVX) on mice. Hematoxylin and eosin staining, Masson and Immunohistochemical staining were used to assess pathologic changes. Real-time quantitative PCR, Western blot, and immunofluorescence were employed to assess the expression levels of CYLD, WNK1, NLRP3 and osteogenesis-related molecules. The binding relationship between CYLD and WNK1 was validated through a co-immunoprecipitation assay. The osteogenic capacity of BMSCs was determined using Alkaline phosphatase (ALP) and alizarin red staining (ARS). Protein ubiquitination was evaluated by a ubiquitination assay. RESULTS: The levels of both CYLD and WNK1 were decreased in bone tissues and BMSCs of OVX mice. Overexpression of CYLD or WNK1 induced osteogenic differentiation in BMSCs. Additionally, NLRP3 inflammation was activated in OVX mice, but its activation was attenuated upon overexpression of CYLD or WNK1. CYLD was observed to reduce the ubiquitination of WNK1, thereby enhancing its protein stability and leading to the inactivation of NLRP3 inflammation. However, the protective effects of CYLD on osteogenic differentiation and NLRP3 inflammation inactivation were diminished upon silencing of WNK1. CONCLUSION: CYLD mitigates NLRP3 inflammasome-triggered pyroptosis in osteoporosis through its deubiquitination of WNK1.


Assuntos
Doenças Ósseas , Osteoporose , Animais , Feminino , Camundongos , Diferenciação Celular , Células Cultivadas , Enzima Desubiquitinante CYLD , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Osteogênese , Osteoporose/metabolismo , Piroptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA