Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365278

RESUMO

BACKGROUND: Inflammatory and metabolic biomarkers have been associated with hepatocellular cancer (HCC) risk in phases I and II biomarker studies. We developed and internally validated a robust metabolic biomarker panel predictive of HCC in a longitudinal phase III study. METHODS: We used data and banked serum from a prospective cohort of 2266 adult patients with cirrhosis who were followed until the development of HCC (n=126). We custom designed a FirePlex immunoassay to measure baseline serum levels of 39 biomarkers and established a set of biomarkers with the highest discriminatory ability for HCC. We performed bootstrapping to evaluate the predictive performance using C-index and time-dependent area under the receiver operating characteristic curve (AUROC). We quantified the incremental predictive value of the biomarker panel when added to previously validated clinical models. RESULTS: We identified a nine-biomarker panel (P9) with a C-index of 0.67 (95% CI 0.66 to 0.67), including insulin growth factor-1, interleukin-10, transforming growth factor ß1, adipsin, fetuin-A, interleukin-1 ß, macrophage stimulating protein α chain, serum amyloid A and TNF-α. Adding P9 to our clinical model with 10 factors including AFP improved AUROC at 1 and 2 years by 4.8% and 2.7%, respectively. Adding P9 to aMAP score improved AUROC at 1 and 2 years by 14.2% and 7.6%, respectively. Adding AFP L-3 or DCP did not change the predictive ability of the P9 model. CONCLUSIONS: We identified a panel of nine serum biomarkers that is independently associated with developing HCC in cirrhosis and that improved the predictive ability of risk stratification models containing clinical factors.

2.
Cancer Res ; 82(16): 2848-2859, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35731919

RESUMO

African-American (AA) men are more likely to be diagnosed with and die from prostate cancer than European American (EA) men. Despite the central role of the androgen receptor (AR) transcription factor in prostate cancer, little is known about the contribution of epigenetics to observed racial disparities. We performed AR chromatin immunoprecipitation sequencing on primary prostate tumors from AA and EA men, finding that sites with greater AR binding intensity in AA relative to EA prostate cancer are enriched for lipid metabolism and immune response genes. Integration with transcriptomic and metabolomic data demonstrated coinciding upregulation of lipid metabolism gene expression and increased lipid levels in AA prostate cancer. In a metastatic prostate cancer cohort, upregulated lipid metabolism associated with poor prognosis. These findings offer the first insights into ancestry-specific differences in the prostate cancer AR cistrome. The data suggest a model whereby increased androgen signaling may contribute to higher levels of lipid metabolism, immune response, and cytokine signaling in AA prostate tumors. Given the association of upregulated lipogenesis with prostate cancer progression, our study provides a plausible biological explanation for the higher incidence and aggressiveness of prostate cancer observed in AA men. SIGNIFICANCE: With immunotherapies and inhibitors of metabolic enzymes in clinical development, the altered lipid metabolism and immune response in African-American men provides potential therapeutic opportunities to attenuate racial disparities in prostate cancer.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Negro ou Afro-Americano/genética , Humanos , Imunidade , Metabolismo dos Lipídeos/genética , Masculino , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Regulação para Cima
3.
Endocr Relat Cancer ; 29(1): 15-31, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34636746

RESUMO

Castration-resistant prostate cancer (CRPC) remains highly lethal and in need of novel, actionable therapeutic targets. The pioneer factor GATA2 is a significant prostate cancer (PC) driver and is linked to poor prognosis. GATA2 directly promotes androgen receptor (AR) gene expression (both full-length and splice-variant) and facilitates AR binding to chromatin, recruitment of coregulators, and target gene transcription. Unfortunately, there is no clinically applicable GATA2 inhibitor available at the moment. Using a bioinformatics algorithm, we screened in silico 2650 clinically relevant drugs for a potential GATA2 inhibitor. Validation studies used cytotoxicity and proliferation assays, global gene expression analysis, RT-qPCR, reporter assay, reverse phase protein array analysis (RPPA), and immunoblotting. We examined target engagement via cellular thermal shift assay (CETSA), ChIP-qPCR, and GATA2 DNA-binding assay. We identified the vasodilator dilazep as a potential GATA2 inhibitor and confirmed on-target activity via CETSA. Dilazep exerted anticancer activity across a broad panel of GATA2-dependent PC cell lines in vitro and in a PDX model in vivo. Dilazep inhibited GATA2 recruitment to chromatin and suppressed the cell-cycle program, transcriptional programs driven by GATA2, AR, and c-MYC, and the expression of several oncogenic drivers, including AR, c-MYC, FOXM1, CENPF, EZH2, UBE2C, and RRM2, as well as of several mediators of metastasis, DNA damage repair, and stemness. In conclusion, we provide, via an extensive compendium of methodologies, proof-of-principle that a small molecule can inhibit GATA2 function and suppress its downstream AR, c-MYC, and other PC-driving effectors. We propose GATA2 as a therapeutic target in CRPC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Cromatina , Dilazep/uso terapêutico , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Oncogenes , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/metabolismo
4.
BMC Evol Biol ; 17(1): 86, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335721

RESUMO

BACKGROUND: From bat wings to whale flippers, limb diversification has been crucial to the evolutionary success of mammals. We performed the first transcriptome-wide study of limb development in multiple species to explore the hypothesis that mammalian limb diversification has proceeded through the differential expression of conserved shared genes, rather than by major changes to limb patterning. Specifically, we investigated the manner in which the expression of shared genes has evolved within and among mammalian species. RESULTS: We assembled and compared transcriptomes of bat, mouse, opossum, and pig fore- and hind limbs at the ridge, bud, and paddle stages of development. Results suggest that gene expression patterns exhibit larger variation among species during later than earlier stages of limb development, while within species results are more mixed. Consistent with the former, results also suggest that genes expressed at later developmental stages tend to have a younger evolutionary age than genes expressed at earlier stages. A suite of key limb-patterning genes was identified as being differentially expressed among the homologous limbs of all species. However, only a small subset of shared genes is differentially expressed in the fore- and hind limbs of all examined species. Similarly, a small subset of shared genes is differentially expressed within the fore- and hind limb of a single species and among the forelimbs of different species. CONCLUSIONS: Taken together, results of this study do not support the existence of a phylotypic period of limb development ending at chondrogenesis, but do support the hypothesis that the hierarchical nature of development translates into increasing variation among species as development progresses.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/classificação , Mamíferos/genética , Animais , Evolução Biológica , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Extremidades/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/crescimento & desenvolvimento , Transcriptoma , Asas de Animais
5.
Arthritis Rheum ; 56(1): 334-44, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17195237

RESUMO

OBJECTIVE: Increased signaling by transforming growth factor beta (TGFbeta) has been implicated in systemic sclerosis (SSc; scleroderma), a complex disorder of connective tissues characterized by excessive accumulation of collagen and other extracellular matrix components in systemic organs. To directly assess the effect of sustained TGFbeta signaling in SSc, we established a novel mouse model in which the TGFbeta signaling pathway is activated in fibroblasts postnatally. METHODS: The mice we used (termed TBR1(CA); Cre-ER mice) harbor both the DNA for an inducible constitutively active TGFbeta receptor I (TGFbetaRI) mutation, which has been targeted to the ROSA locus, and a Cre-ER transgene that is driven by a fibroblast-specific promoter. Administration of 4-hydroxytamoxifen 2 weeks after birth activates the expression of constitutively active TGFbetaRI. RESULTS: These mice recapitulated clinical, histologic, and biochemical features of human SSc, showing pronounced and generalized fibrosis of the dermis, thinner epidermis, loss of hair follicles, and fibrotic thickening of small blood vessel walls in the lung and kidney. Primary skin fibroblasts from these mice showed elevated expression of downstream TGFbeta targets, reproducing the hallmark biochemical phenotype of explanted SSc dermal fibroblasts. The mouse fibroblasts also showed elevated basal expression of the TGFbeta-regulated promoters plasminogen activator inhibitor 1 and 3TP, increased Smad2/3 phosphorylation, and enhanced myofibroblast differentiation. CONCLUSION: Constitutive activation of TGFbeta signaling in fibroblastic cells of mice after birth caused a marked fibrotic phenotype characteristic of SSc. These mice should be excellent models with which to test therapies aimed at correcting excessive TGFbeta signaling in human scleroderma.


Assuntos
Modelos Animais de Doenças , Fibroblastos/metabolismo , Escleroderma Sistêmico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Marcação de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor da Proteína C/metabolismo , Proteínas Serina-Treonina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...