Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(23): 15003-15012, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38816680

RESUMO

Residual stress in metal halide perovskite films intimately affects the photovoltaic figure of merit and longevity of perovskite solar cells. A delicate management of the crystallization kinetics is critical to the preparation of high-quality perovskite films. Only very limited methods, however, are available to regulate the residual stress of a perovskite film in a controllable manner, particularly for a perovskite film fabricated by a two-step method. Here, we demonstrate the construction of a hierarchical PbI2 scaffold inspired by Archaeoprepona demophon butterfly by combining an interlayer guided growth of porous structure and nanoimprinting. The hierarchically structured PbI2 that emulates the physical structure of the butterfly wing scale permits unimpeded permeation of organic amine salts and sufficient space for volume expansion during the crystallization process, accompanied by preferential perovskite growth of a defectless (001) crystal plane. The optimized perovskite film outperforms the control with reduced residual stress and defect density. Consequently, perovskite solar cells with a respectable power conversion efficiency reaching 23.4% (certified 23%) and an impressive open-circuit voltage of 1.184 V can be achieved. The target device can maintain 80% of initial efficiency after maximum power point tracking under illumination for 700 h. This work expands the range of engineering toward PbI2 by exploring a simultaneously tailored morphology and crystallinity and highlights the significance of a hierarchical PbI2 scaffold as an alternative choice to mitigate residual stress in a two-step processed perovskite active layer and boost the longevity of perovskite solar cells.

2.
Small Methods ; 6(11): e2200757, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36202752

RESUMO

Perovskite solar cells (PSCs) have undergone unprecedented growth in the past decade as an emerging photovoltaic technology. Up till now, the power conversion efficiency of PSCs has exceeded 25% that rivals silicon solar cells and there is still room for further enhancement. However, the development in long-term stability lags far behind, which remains a great concern for the commercial application in the future. The device instability mainly arises from the functional components, including perovskite film, charge transport layers, and electrodes along with the involved interfaces. As the most widely studied hole transport layer at the current stage, 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9-spirobifluorene (Spiro-OMeTAD) helps contribute to the achievement of record efficiency but it weakens the device stability due to the doping-induced side effects such as hygroscopicity and ion migration. Great efforts are devoted to boosting the stability of Spiro-OMeTAD while maintaining excellent photovoltaic performance. In this review, the fundamental properties of Spiro-OMeTAD have been summarized and the recent advances in engineering Spiro-OMeTAD-based hole transport layer for the sake of highly efficient PSCs with enhanced longevity are highlighted. In the end, an outlook for the further optimization of Spiro-OMeTAD is provided and the issues related to large-scale production are discussed.

3.
Angew Chem Int Ed Engl ; 61(42): e202211259, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36050283

RESUMO

Phase-pure crystallised perovskite is considered an excellent precursor for fabricating high-stability perovskite films with minimal defects. However, currently available protocols for synthesising crystallised perovskites must be conducted in an inert atmosphere or in the presence of an organic solvent as the reaction medium, which hinders mass production. Here, we report the fast synthesis of α-phase-crystallised perovskite powder assisted by moisture in ambient air. Moisture can promote the reaction between PbI2 and organic salts and facilitate complete phase transition, as demonstrated in a joint experimental and theoretical study. Perovskite solar cells with a power conversion efficiency of 24.07 % were achieved using phase-pure crystallised perovskite powder as the precursor. This ambient-air-compatible method opens new vistas to reproducible high-quality precursors for large-scale photovoltaic applications.

4.
Adv Mater ; 34(23): e2200978, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35388930

RESUMO

State-of-the-art perovskite solar cells (PSCs) exhibit comparable power conversion efficiency (PCE) to that of silicon photovoltaic devices. However, the device stability remains a major obstacle that restricts widespread application. Doping-induced hygroscopicity, ion diffusion, and use of polar solvents in the hole-transport layer are detrimental factors for performance degradation of PSCs. Here, phase-transfer-catalyzed LiTFSI doping in Spiro-OMeTAD is developed to address these negative impacts. 12-Crown-4 as an efficient phase-transfer catalyst promotes the dissolution of LiTFSI without requiring acetonitrile. A combined experimental and theoretical study demonstrates the host-guest interaction between Li+ ions and 12-crown-4. Crowning Li+ ions by forming more stable and less diffusive crown-ether-Li+ complexes retards the generation of hygroscopic lithium oxides and mitigates Li+ -ion migration. Optimized PSCs deliver enhanced PCE and significantly improved stability under humid and thermal conditions compared with a control device. This method can also be applied to dope π-conjugated polymer. The findings provide a facile avenue to improve the long-term stability of PSCs.

5.
Nat Commun ; 12(1): 5247, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475386

RESUMO

Vast bulk recombination of photo-generated carriers and sluggish surface oxygen evolution reaction (OER) kinetics severely hinder the development of photoelectrochemical water splitting. Herein, through constructing a vertically ordered ZnInS nanosheet array with an interior gradient energy band as photoanode, the bulk recombination of photogenerated carriers decreases greatly. We use the atomic layer deposition technology to introduce Fe-In-S clusters into the surface of photoanode. First-principles calculations and comprehensive characterizations indicate that these clusters effectively lower the electrochemical reaction barrier on the photoanode surface and promote the surface OER reaction kinetics through precisely affecting the second and third steps (forming processes of O* and OOH*) of the four-electron reaction. As a result, the optimal photoanode exhibits the high performance with a significantly enhanced photocurrent of 5.35 mA cm-2 at 1.23 VRHE and onset potential of 0.09 VRHE. Present results demonstrate a robust platform for controllable surface modification, nanofabrication, and carrier transport.

6.
Adv Mater ; 33(10): e2006745, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33538006

RESUMO

Thanks to the tunable bandgap and excellent photoelectric characteristics, perovskites have been widely used in semitransparent solar cells (ST-SCs). Most works present unsatisfactory power conversion efficiencies (PCEs) through reducing the thickness of the perovskite films because there is a trade-off between PCE and average visible transmittance (AVT). As a consequence, most PCEs are less than 12% when the AVT is higher than 20% due to the limited voltage (Voc ) and short-circuit current (Jsc ). Herein, a strategy of intermediate adduct (IMAT) engineering is developed to improve the film quality of the inorganic perovskite CsPbI2 Br, which is a challenging issue to limit its performance of efficiency and stability. A normal n-i-p-structured PSC based on the optimal CsPbI2 Br film delivers a PCE of 16.02% with excellent stability. Furthermore, through optimizing the electrode type and interface, the ST-PSC shows a high Voc larger than 1.2 V and the PCE reaches 14.01% and 10.36% under an AVT of 31.7% and 40.9%, respectively. This is the first demonstration of a CsPbI2 Br ST-PSC, and it outperforms most of other types of perovskites.

7.
Sci Bull (Beijing) ; 66(23): 2362-2368, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654122

RESUMO

The stability of perovskite solar cells is an important issue to be addressed for future applications. Perovskite solar cells are vulnerable to exposure to UV light due to promoted chemical reactions. However, preventing UV light from entering solar cells lowers the power conversion efficiency by reducing the photocurrent. The challenge is to improve UV stability without sacrificing efficiency. Here, we demonstrate the reduction of UV light-related negative effects from the perspective of spectral modification. By simultaneously introducing UV-visible downshifting and light trapping, perovskite solar cells can achieve a comparable efficiency of over 21% to that of an unmodified device. The optimized device obtains increased UV stability due to UV-visible downshifting. Different from other strategies, spectral modification externally alters the composition of incident light and improves UV stability without changing the internal device architecture, which is broadly applicable to perovskite solar cells with different structures. The present work may also find applications in other types of solar cells to boost the stability of devices exposed to UV light.

8.
Adv Mater ; 32(14): e1908108, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32080927

RESUMO

Integration of various photodetectors with different light-sensitive materials and detection capacity is an inevitable way to achieve entire color/spectrum detection. However, the uneven capacity of each photodetector would drag the overall performance behind, especially the response speed. A response time down to nanosecond level has not previously been reported for a filter-free color/spectrum-sensitive photodetector, as far as is known. Here, a self-powered filterless color-sensitive photodetection array based on an in situ formed gradient perovskite absorber film with continuously tunable bandgap is demonstrated. Ultrahigh-speed response at nanosecond level is achieved in all the ingredient photodetectors. The junction capacitance being influenced by carrier concentration in the absorber is identified to be responsible for the detection speed. Without any optic or mechanical supporting system, the designed color detector exhibits an external quantum efficiency (EQE) up to 94% and a high spectral resolution of around 80 nm for the whole visible spectrum. This work offers a guidance to achieve fast response of perovskite-based photodetectors from the point of view of carrier-donor control and demonstrates a new avenue to establish color-sensitive photodetectors/spectrometers.

9.
Small ; 16(10): e1906681, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32049437

RESUMO

As the fastest developing photovoltaic device, perovskite solar cells have achieved an extraordinary power conversion efficiency (PCE) of 25.3% under AM 1.5 illumination. However, few studies have been devoted to perovskite solar cells harvesting artificial light, owing to the great challenge in the simultaneous manipulation of bandgap-adjustable perovskite materials, corresponding matched energy band structure of carrier transport materials, and interfacial defects. Herein, through systematic morphology, composition, and energy band engineering, high-quality Cs0.05 MA0.95 PbBrx I3- x perovskite as the light absorber and Nby Ti1- y O2 (Nb:TiO2 ) as the electron transport material with an ideal energy band alignment are obtained simultaneously. The theoretical-limit-approaching record PCEs of 36.3% (average: 34.0 ± 1.2%) under light-emitting diode (LED, warm white) and 33.2% under fluorescent lamp (cold white) are achieved simultaneously, as well as a PCE of 19.5% (average: 18.9 ± 0.3%) under solar illumination. An integrated energy conversion and storage system based on an artificial light response solar cell and sodium-ion battery is established for diverse practical applications, including a portable calculator, quartz clock, and even environmental monitoring equipment. Over a week of stable operation shows its great practical potential and provides a new avenue to promote the commercialization of perovskite photovoltaic devices via integration with ingenious electronic devices.

10.
Angew Chem Int Ed Engl ; 58(33): 11497-11504, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152477

RESUMO

Organic-inorganic perovskite solar cells with a planar architecture have attracted much attention due to the simple structure and easy fabrication. However, the power conversion efficiency and hysteresis behavior need to be improved for planar-type devices where the electron transport layer is vital. SnO2 is a promising alternative for TiO2 as the electron transport layer owing to the high charge mobility and chemical stability, but the hysteresis issue can still remain despite the use of SnO2 . Now, a facile and effective method is presented to simultaneously tune the electronic property of SnO2 and passivate the defects at the interface between the perovskite and SnO2 . The perovskite solar cells with ammonium chloride induced coagulated SnO2 colloids exhibit a power conversion efficiency of 21.38 % with negligible hysteresis, compared to 18.71 % with obvious hysteresis for the reference device. The device stability can also be significantly improved.

11.
Adv Mater ; 30(28): e1801935, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29786889

RESUMO

Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination.

12.
Adv Sci (Weinh) ; 5(3): 1700614, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29593964

RESUMO

In the planar perovskite solar cells (PSCs), the electron transport layer (ETL) plays a critical role in electron extraction and transport. Widely utilized TiO2 ETLs suffer from the low conductivity and high surface defect density. To address these problems, for the first time, two types of ETLs based on TiO2 phase junction are designed and fabricated distributed in the opposite space, namely anatase/rutile and rutile/anatase. The champion efficiency of PSCs based on phase junction ETL is over 15%, which is much higher than that of cells with single anatase (9.8%) and rutile (11.8%) TiO2 as ETL. The phase junction based PSCs also demonstrated obviously reduced hysteresis. The enhanced performance is discussed and mainly ascribed to the excellent capability of carrier extraction, defect passivation, and reduced recombination at the ETL/perovskite interface. This work opens a new phase junction ETL strategy toward interfacial energy band manipulation for improved PSC performance.

13.
Sci Rep ; 5: 9317, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25799125

RESUMO

The counter electrode has a great influence on the performance of the dye-sensitized solar cells (DSSCs). The research and development of Pt-free counter electrode is becoming one of the hot areas in the field of DSSCs. Herein, we successfully synthesized a ternary metal sulfide (CoNi2S4) nanostructure on FTO substrate by hydrothermal method and investigated its application as counter electrode. The as-synthesized sample could exhibit better electrocatalystic property than that of Pt, and corresponding DSSCs have comparable conversion efficiency with typical Pt catalyzed cells. The easy synthesis, low cost and excellent electrocatalytic property may help the CoNi2S4 nanostructure stand out as an alternative counter electrode in DSSCs.

14.
Nanoscale Res Lett ; 9(1): 608, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489277

RESUMO

We report the successful growth of NiCo2S4 nanosheet films converted from NiCo2O4 nanosheet films on fluorine-doped tin oxide substrates by a low-temperature solution process. Low-cost NiCo2S4 and NiCo2O4 nanosheet films were directly used for replacing conventional Pt and NiO as counter electrodes and photocathodes, respectively, to construct all-nano p-type dye-sensitized solar cells (p-DSSCs) with high performance. Compared to Pt, NiCo2S4 showed higher catalytic activity towards the I(-)/I3 (-) redox in electrolyte, resulting in an improved photocurrent density up to 2.989 mA/cm(2), which is the highest value in reported p-DSSCs. Present p-DSSCs demonstrated a cell efficiency of 0.248 % that is also comparable with typical NiO-based p-DSSCs.

15.
ACS Appl Mater Interfaces ; 6(19): 17200-7, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25225738

RESUMO

We report the fabrication of 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterojunction arrays by a facile hydrothermal process and their use as photoelectrodes in a photoelectrochemical (PEC) cell for high-performance solar water splitting. The morphology, microstructure, and phase of pristine TiO2 and 2D ZnIn2S4 nanosheet/1D TiO2 nanorod heterojunction arrays were characterized in detail. PEC measurements showed that 2D/1D heterojunction arrays offered enhanced photocurrent density (3 times higher than that of pristine TiO2), negatively shifted onset potential from 0.05 to -0.53 V, and high light on/off cycle stability. Electrochemical impedance investigation attested to a significant improvement of the interface electron transfer kinetics in this heterojunction, thus facilitating electron-hole separation, transfer, and collection, which resulted in enhanced PEC properties.

16.
J Nanosci Nanotechnol ; 14(5): 3631-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734603

RESUMO

White light-emitting diodes have recently attracted great attention as promising candidates for next-generation lighting. The LuVO4:Eu3+,Bi3+ as new near-ultraviolet excited phosphors were synthesized via high-temperature solid-state reactions. The X-ray diffraction, excitation spectra, emission spectra and decay lifetimes of the phosphors were measured to characterize the structure and luminescent properties. With Bi3+ doping, the edge of excitation band corresponding to the Eu3+ emission shifts from 350 nm to 400 nm with the help of Bi(3+)-V5+ metal-metal charge transfer. Consequently, the phosphor exhibits efficient absorption of near-ultraviolet excitation, and it also exhibits excellent performance in emission intensity compared with the Y2O2S:Eu3+ phosphor in current use. This red-emitting material may be applied as a promising red phosphor for near-ultraviolet excited white light-emitting diodes.

17.
Nanoscale Res Lett ; 9(1): 183, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24731603

RESUMO

ZnO nanostructures were manipulated, via a low-temperature solution process, from pure nanorod arrays to complex nanostructures of microflowers on nanorod arrays with adjusted quantities of flowers. We proposed the mechanism of local dissolution-driven growth to rationally discuss the novel growth process. These nanostructures were used as photoanodes in dye-sensitized solar cells. Compared to pure nanorod arrays, the nanorod array-microflower hierarchical structures improved the power conversion efficiency from 0.41% to 0.92%, corresponding to a 124% efficiency increase. The enhancement of the efficiency was mainly ascribed to the synergistic effect of the enhanced surface area for higher dye loading and the improved light harvesting from efficient light scattering. Present results provide a promising route to improve the capability of light-harvesting for ZnO nanorod array-based DSSCs.

18.
J Nanosci Nanotechnol ; 14(6): 4490-4, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738418

RESUMO

NaYF4:Eu3+ core and NaYF4:Eu3+/NaYF4 core/shell nanocrystals (NCs) were synthesized via a wet chemical method. The transmission electron microscope photographs show that the core and core/shell nanoparticles are monodisperse and uniform NCs with average diameters of 22 and 26 nm respectively. The photoluminescence (PL) properties of the samples, including the PL excitation and emission spectra, and luminescent decay curves, are investigated in detail. The results show that the intensity of 5D2 emission relative to that of 5D0 is stronger in NaYF4:Eu3+/NaYF4 core/shell NCs than that in NaYF4:Eu3+ core NCs, and a longer decay lifetime of 5D2 is observed in core/shell samples. In addition, from the corrected emission spectra of 5D0, the 5D0 radiative lifetimes were calculated. These together with the measured decay lifetime of 5D0 emission give the intrinsic quantum yields of 5D0. The results were well interpreted by considering the surface effects.


Assuntos
Európio/química , Fluoretos/química , Medições Luminescentes/métodos , Nanoporos/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Ítrio/química , Cristalização/métodos , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
19.
Adv Mater ; 26(17): 2619-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24634326

RESUMO

CdS nanostructures have received much attention in recent years as building blocks for optoelectronic devices due to their unique physical and chemical properties. This progress report provides an overview of recent research about rational design of CdS nanoscale photodetectors. Three kinds of photodetectors according to the metal-semiconductor contact types are discussed in detail: Ohmic contact, Schottky contact, and field enhanced transistor configuration. The focus is on the tuning of optical and electrical properties CdS nanostructures by element doping, composition and bandgap engineering, and heterojunction integration, along with thus modified device performances generated during these tuning processes. Latest concepts of photodetector design such as flexible, self-powered, plasmonic, and piezophototronic photodetectors with novel properties are introduced to demonstrate the future directions of such an exciting research field.

20.
ACS Appl Mater Interfaces ; 5(16): 7845-51, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23879602

RESUMO

Flexible three-dimensional SnO2 nanowire arrays were synthesized on a carbon cloth template in combination with atomic layer deposition and vapor transport. The as-grown nanostructures were assembled by high density quasi-aligned nanowires with a large aspect ratio. Nanoscale photodetectors based on the flexible nanostructure demonstrate excellent ultraviolet light selectivity, a high speed response time less than 0.3 s, and dark current as low as 2.3 pA. Besides, field emission measurements of the hierarchical structure show a rather low turn-on field (3.3 Vµm(-1)) and threshold field (4.5 Vµm(-1)), as well as an excellent field enhancment factor (2375) with a long-term stability up to 20 h. These results indicate that the flexible three-dimensional SnO2 nanowire arrays can be used as functional building blocks for efficient photodetectors and field emitters.


Assuntos
Condutividade Elétrica , Nanofios/química , Compostos de Estanho/química , Carbono/química , Propriedades de Superfície , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...