Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116458

RESUMO

Diabetic nephropathy (DN) is one of the most common complications of diabetes. Our previous study showed that CD38 knockout (CD38KO) mice had protective effects on many diseases. However, the roles and mechanisms of CD38 in DN remain unknown. Here, DN mice were generated by HFD feeding plus streptozotocin (STZ) injection in male CD38KO and CD38flox mice. Mesangial cells (SV40 MES 13 cells) were used to mimic the injury of DN with palmitic acid (PA) treatment in vitro. Our results showed that CD38 expression was significantly increased in kidney of diabetic CD38flox mice and SV40 MES 13 cells treated with PA. CD38KO mice were significantly resistant to diabetes-induced renal injury. Moreover, CD38 deficiency markedly decreased HFD/STZ-induced lipid accumulation, fibrosis and oxidative stress in kidney tissue. In contrast, overexpression of CD38 aggravated PA-induced lipid accumulation and oxidative stress. CD38 deficiency increased expression of SIRT3, while overexpression of CD38 decreased its expression. More importantly, 3-TYP, an inhibitor of SIRT3, significantly enhanced PA-induced lipid accumulation and oxidative stress in CD38 overexpressing cell lines. In conclusion, our results demonstrated that CD38 deficiency prevented DN by inhibiting lipid accumulation and oxidative stress through activation of the SIRT3 pathway.

2.
Invest Ophthalmol Vis Sci ; 65(5): 36, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38776115

RESUMO

Purpose: The purpose of this study was to investigate the protective effect of CD38 deletion on retinal ganglion cells (RGCs) in a mouse retinal ischemia/reperfusion (I/R) model and an optic nerve crush (ONC) model, and to elucidate the underlying molecular mechanisms. Methods: Retinal I/R and ONC models were constructed in mice. PCR was used to identify the deletion of CD38 gene in mice, hematoxylin and eosin (H&E) staining was used to evaluate the changes in retinal morphology, and electroretinogram (ERG) was used to evaluate the changes in retinal function. The survival of RGCs and activation of retinal macroglia were evaluated by immunofluorescence staining. The expression of Sirt1, CD38, Ac-p65, Ac-p53, TNF-α, IL-1ß, and Caspase3 proteins in the retina was further evaluated by protein imprinting. Results: In retinal I/R and ONC models, CD38 deficiency reduced the loss of RGCs and activation of macroglia and protected the retinal function. CD38 deficiency increased the concentration of NAD+, reduced the degree of acetylation of NF-κB p65 and p53, and reduced expression of the downstream inflammatory cytokines TNFα, IL-1ß, and apoptotic protein Caspase3 in the retina in the ONC model. Intraperitoneal injection of the Sirt1 inhibitor EX-527 partially counteracted the effects of CD38 deficiency, suggesting that CD38 deficiency acts at least in part through the NAD+/Sirt1 pathway. Conclusions: CD38 plays an important role in the pathogenesis of retinal I/R and ONC injury. CD38 deletion protects RGCs by attenuating inflammatory responses and apoptosis through the NAD+/Sirt1 pathway.


Assuntos
ADP-Ribosil Ciclase 1 , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , NAD , Traumatismos do Nervo Óptico , Traumatismo por Reperfusão , Células Ganglionares da Retina , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Camundongos , NAD/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Eletrorretinografia , Compressão Nervosa , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Masculino , Transdução de Sinais/fisiologia
3.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673941

RESUMO

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Assuntos
ADP-Ribosil Ciclase 1 , Angiotensina II , Aneurisma da Aorta Abdominal , Camundongos Knockout , Miócitos de Músculo Liso , Remodelação Vascular , Animais , Masculino , Camundongos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transdução de Sinais , Remodelação Vascular/genética
4.
Cell Mol Gastroenterol Hepatol ; 17(6): 965-981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342302

RESUMO

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (HIRI) often occurs in liver surgery, such as partial hepatectomy and liver transplantation, in which myeloid macrophage-mediated inflammation plays a critical role. Cell division cycle 42 (Cdc42) regulates cell migration, cytoskeleton rearrangement, and cell polarity. In this study, we explore the role of myeloid Cdc42 in HIRI. METHODS: Mouse HIRI models were established with 1-hour ischemia followed by 12-hour reperfusion in myeloid Cdc42 knockout (Cdc42mye) and Cdc42flox mice. Myeloid-derived macrophages were traced with RosamTmG fluorescent reporter under LyzCre-mediated excision. The experiments for serum or hepatic enzymic activities, histologic and immunologic analysis, gene expressions, flow cytometry analysis, and cytokine antibody array were performed. RESULTS: Myeloid deletion of Cdc42 significantly alleviated hepatic damages with the reduction of hepatic necrosis and inflammation, and reserved hepatic functions following HIRI in mice. Myeloid Cdc42 deficiency suppressed the infiltration of myeloid macrophages, reduced the secretion of proinflammatory cytokines, restrained M1 polarization, and promoted M2 polarization of myeloid macrophages in livers. In addition, inactivation of Cdc42 promoted M2 polarization via suppressing the phosphorylation of STAT1 and promoting phosphorylation of STAT3 and STAT6 in myeloid macrophages. Furthermore, pretreatment with Cdc42 inhibitor, ML141, also protected mice from hepatic ischemia-reperfusion injury. CONCLUSIONS: Inhibition or deletion of myeloid Cdc42 protects liver from HIRI via restraining the infiltration of myeloid macrophages, suppressing proinflammatory response, and promoting M2 polarization in macrophages.


Assuntos
Modelos Animais de Doenças , Inflamação , Fígado , Macrófagos , Camundongos Knockout , Traumatismo por Reperfusão , Proteína cdc42 de Ligação ao GTP , Animais , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/prevenção & controle , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Camundongos , Macrófagos/metabolismo , Macrófagos/imunologia , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia , Inflamação/patologia , Inflamação/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Fator de Transcrição STAT3/metabolismo , Masculino , Fator de Transcrição STAT1/metabolismo , Citocinas/metabolismo , Fator de Transcrição STAT6/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/deficiência , Camundongos Endogâmicos C57BL , Deleção de Genes
5.
Int Immunopharmacol ; 129: 111660, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350357

RESUMO

BACKGROUND: Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE: This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS: hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS: hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION: Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.


Assuntos
Fluoresceínas , Interleucina-10 , Células-Tronco Mesenquimais , Succinimidas , Camundongos , Humanos , Animais , Interleucina-10/farmacologia , Âmnio , Isoproterenol , Remodelação Ventricular , Macrófagos , Inflamação/induzido quimicamente , Inflamação/terapia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Fibrose , Cardiomegalia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA