Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7385-7405, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38687956

RESUMO

Anemoside B4 (AB4), a triterpenoidal saponin from Pulsatilla chinensis, shows significant anti-inflammatory activity, and may be used for treating inflammatory bowel disease (IBD). Nevertheless, its application is limited due to its high molecular weight and pronounced water solubility. To discover new effective agents for treating IBD, we synthesized 28 AB4 derivatives and evaluated their cytotoxic and anti-inflammatory activities in vitro. Among them, A3-6 exhibited significantly superior anti-inflammatory activity compared to AB4. It showed a significant improvement in the symptoms of DSS-induced colitis in mice, with a notably lower oral effective dose compared to AB4. Furthermore, we discovered that A3-6 bound with pyruvate carboxylase (PC), then inhibited PC activity, reprogramming macrophage function, and alleviated colitis. These findings indicate that A3-6 is a promising therapeutic candidate for colitis, and PC may be a potential new target for treating colitis.


Assuntos
Anti-Inflamatórios , Colite , Piruvato Carboxilase , Saponinas , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/síntese química , Colite/tratamento farmacológico , Colite/induzido quimicamente , Sulfato de Dextrana , Descoberta de Drogas , Camundongos Endogâmicos C57BL , Piruvato Carboxilase/antagonistas & inibidores , Piruvato Carboxilase/metabolismo , Células RAW 264.7 , Saponinas/farmacologia , Saponinas/química , Saponinas/uso terapêutico , Saponinas/síntese química , Relação Estrutura-Atividade
2.
Food Chem ; 451: 139431, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663248

RESUMO

The black morel (Morchella sextelata) is a valuable edible and medicinal mushroom appreciated worldwide. Here, lipidomic profiles and lipid dynamic changes during the growth of M. sexletata were analyzed using ultra-performance liquid chromatography coupled with mass spectrometry. 203 lipid molecules, including four categories and fourteen subclasses, were identified in mature fruiting bodies, with triacylglycerol being the most abundant (37.00 %). Fatty acid composition analysis revealed that linoleic acid was the major fatty acid among the free fatty acids, glycerolipids and glycerophospholipids. The relative concentration of lipids in M. sextelata changed significantly during its growth, from which 12 and 29 differential lipid molecules were screened out, respectively. Pathway analysis based on these differential lipids showed that glycerophospholipid metabolism was the major pathway involved in the growth of M. sextelata. Our study provides a comprehensive understanding of the lipids in M. sextelata and will facilitate the development and utilization of M. sextelata.

3.
BMC Biol ; 22(1): 86, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637801

RESUMO

BACKGROUND: The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for blood-brain barrier penetrating peptides, their performance has often been hampered by issue of limited positive data. RESULTS: In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set. CONCLUSIONS: This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.


Assuntos
Peptídeos Penetradores de Células , Doenças do Sistema Nervoso Central , Humanos , Barreira Hematoencefálica/química , Células Endoteliais , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Encéfalo , Doenças do Sistema Nervoso Central/tratamento farmacológico
4.
Int J Antimicrob Agents ; 63(5): 107122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431108

RESUMO

BACKGROUND: With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. METHODS: We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. RESULTS: A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589-0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54-73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. CONCLUSIONS: Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.


Assuntos
Antibacterianos , Infecções Bacterianas , Interações Medicamentosas , Aprendizado de Máquina , Humanos , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Estudos Retrospectivos , Quimioterapia Combinada , Algoritmos
5.
Brief Funct Genomics ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376798

RESUMO

Gut microbes is a crucial factor in the pathogenesis of type 1 diabetes (T1D). However, it is still unclear which gut microbiota are the key factors affecting T1D and their influence on the development and progression of the disease. To fill these knowledge gaps, we constructed a model to find biomarker from gut microbiota in patients with T1D. We first identified microbial markers using Linear discriminant analysis Effect Size (LEfSe) and random forest (RF) methods. Furthermore, by constructing co-occurrence networks for gut microbes in T1D, we aimed to reveal all gut microbial interactions as well as major beneficial and pathogenic bacteria in healthy populations and type 1 diabetic patients. Finally, PICRUST2 was used to predict Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways and KO gene levels of microbial markers to investigate the biological role. Our study revealed that 21 identified microbial genera are important biomarker for T1D. Their AUC values are 0.962 and 0.745 on discovery set and validation set. Functional analysis showed that 10 microbial genera were significantly positively associated with D-arginine and D-ornithine metabolism, spliceosome in transcription, steroid hormone biosynthesis and glycosaminoglycan degradation. These genera were significantly negatively correlated with steroid biosynthesis, cyanoamino acid metabolism and drug metabolism. The other 11 genera displayed an inverse correlation. In summary, our research identified a comprehensive set of T1D gut biomarkers with universal applicability and have revealed the biological consequences of alterations in gut microbiota and their interplay. These findings offer significant prospects for individualized management and treatment of T1D.

6.
Comput Biol Med ; 169: 107952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194779

RESUMO

Diabetes, a common chronic disease worldwide, can induce vascular complications, such as coronary heart disease (CHD), which is also one of the main causes of human death. It is of great significance to study the factors of diabetic patients complicated with CHD for understanding the occurrence of diabetes/CHD comorbidity. In this study, by analyzing the risk of CHD in more than 300,000 diabetes patients in southwest China, an artificial intelligence (AI) model was proposed to predict the risk of diabetes/CHD comorbidity. Firstly, we statistically analyzed the distribution of four types of features (basic demographic information, laboratory indicators, medical examination, and questionnaire) in comorbidities, and evaluated the predictive performance of three traditional machine learning methods (eXtreme Gradient Boosting, Random Forest, and Logistic regression). In addition, we have identified nine important features, including age, WHtR, BMI, stroke, smoking, chronic lung disease, drinking and MSP. Finally, the model produced an area under the receiver operating characteristic curve (AUC) of 0.701 on the test samples. These findings can provide personalized guidance for early CHD warning for diabetic populations.


Assuntos
Doença das Coronárias , Diabetes Mellitus , Humanos , Inteligência Artificial , Diabetes Mellitus/diagnóstico , Doença das Coronárias/epidemiologia , Doença das Coronárias/etiologia , China/epidemiologia , Aprendizado de Máquina
7.
Inflamm Res ; 73(3): 345-362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38157008

RESUMO

OBJECTIVES: Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered. METHODS: The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo. RESULTS: AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice. CONCLUSION: We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.


Assuntos
Colite , Saponinas , Ratos , Camundongos , Animais , Piruvato Carboxilase/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/metabolismo , Saponinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Macrófagos/metabolismo , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
8.
Front Med (Lausanne) ; 10: 1281880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020152

RESUMO

Introduction: Hemagglutinin (HA) is responsible for facilitating viral entry and infection by promoting the fusion between the host membrane and the virus. Given its significance in the process of influenza virus infestation, HA has garnered attention as a target for influenza drug and vaccine development. Thus, accurately identifying HA is crucial for the development of targeted vaccine drugs. However, the identification of HA using in-silico methods is still lacking. This study aims to design a computational model to identify HA. Methods: In this study, a benchmark dataset comprising 106 HA and 106 non-HA sequences were obtained from UniProt. Various sequence-based features were used to formulate samples. By perform feature optimization and inputting them four kinds of machine learning methods, we constructed an integrated classifier model using the stacking algorithm. Results and discussion: The model achieved an accuracy of 95.85% and with an area under the receiver operating characteristic (ROC) curve of 0.9863 in the 5-fold cross-validation. In the independent test, the model exhibited an accuracy of 93.18% and with an area under the ROC curve of 0.9793. The code can be found from https://github.com/Zouxidan/HA_predict.git. The proposed model has excellent prediction performance. The model will provide convenience for biochemical scholars for the study of HA.

9.
J Adv Res ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37871773

RESUMO

INTRODUCTION: Cytochrome P450 enzymes (P450s) are recognized as the most versatile catalysts worldwide, playing vital roles in numerous biological metabolism and biosynthesis processes across all kingdoms of life. Despite the vast number of P450 genes available in databases (over 300,000), only a small fraction of them (less than 0.2%) have undergone functional characterization. OBJECTIVES: To provide a convenient platform with abundant information on P450s and their corresponding reactions, we introduce the P450Rdb database, a manually curated resource compiles literature-supported reactions catalyzed by P450s. METHODS: All the P450s and Reactions were manually curated from the literature and known databases. Subsequently, the P450 reactions organized and categorized according to their chemical reaction type and site. The website was developed using HTML and PHP languages, with the MySQL server utilized for data storage. RESULTS: The current version of P450Rdb catalogs over 1,600 reactions, involving more than 590 P450s across a diverse range of over 200 species. Additionally, it offers a user-friendly interface with comprehensive information, enabling easy querying, browsing, and analysis of P450s and their corresponding reactions. P450Rdb is free available at http://www.cellknowledge.com.cn/p450rdb/. CONCLUSIONS: We believe that this database will significantly promote structural and functional research on P450s, thereby fostering advancements in the fields of natural product synthesis, pharmaceutical engineering, biotechnological applications, agricultural and crop improvement, and the chemical industry.

10.
NPJ Digit Med ; 6(1): 136, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524859

RESUMO

Large-scale screening for the risk of coronary heart disease (CHD) is crucial for its prevention and management. Physical examination data has the advantages of wide coverage, large capacity, and easy collection. Therefore, here we report a gender-specific cascading system for risk assessment of CHD based on physical examination data. The dataset consists of 39,538 CHD patients and 640,465 healthy individuals from the Luzhou Health Commission in Sichuan, China. Fifty physical examination characteristics were considered, and after feature screening, ten risk factors were identified. To facilitate large-scale CHD risk screening, a CHD risk model was developed using a fully connected network (FCN). For males, the model achieves AUCs of 0.8671 and 0.8659, respectively on the independent test set and the external validation set. For females, the AUCs of the model are 0.8991 and 0.9006, respectively on the independent test set and the external validation set. Furthermore, to enhance the convenience and flexibility of the model in clinical and real-life scenarios, we established a CHD risk scorecard base on logistic regression (LR). The results show that, for both males and females, the AUCs of the scorecard on the independent test set and the external verification set are only slightly lower (<0.05) than those of the corresponding prediction model, indicating that the scorecard construction does not result in a significant loss of information. To promote CHD personal lifestyle management, an online CHD risk assessment system has been established, which can be freely accessed at http://lin-group.cn/server/CHD/index.html .

11.
J Chem Inf Model ; 63(15): 4960-4969, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37499224

RESUMO

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy-maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.


Assuntos
Inteligência Artificial , Hipoglicemiantes , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Algoritmos , Aprendizado de Máquina
12.
Front Med (Lausanne) ; 10: 1052923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36778738

RESUMO

Introduction: Bitter peptides are short peptides with potential medical applications. The huge potential behind its bitter taste remains to be tapped. To better explore the value of bitter peptides in practice, we need a more effective classification method for identifying bitter peptides. Methods: In this study, we developed a Random forest (RF)-based model, called Bitter-RF, using sequence information of the bitter peptide. Bitter-RF covers more comprehensive and extensive information by integrating 10 features extracted from the bitter peptides and achieves better results than the latest generation model on independent validation set. Results: The proposed model can improve the accurate classification of bitter peptides (AUROC = 0.98 on independent set test) and enrich the practical application of RF method in protein classification tasks which has not been used to build a prediction model for bitter peptides. Discussion: We hope the Bitter-RF could provide more conveniences to scholars for bitter peptide research.

13.
Curr Comput Aided Drug Des ; 19(2): 150-161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567292

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common liver malignancy where tumorigenesis and metastasis are believed to be tied to the hallmarks of hypoxia and tumor microenvironment (TME). METHODS: In this study, to investigate the relationships among hypoxia, TME, and HCC prognosis, we collected two independent datasets from a public database (TCGA-LIHC for identification, GSE14520 for validation) and identified the hypoxia-related differentially expressed genes (DEGs) from the TCGA data, and the univariable Cox regression and lasso regression analyses were performed to construct the prognosis model. An HCC prognosis model with 4 hypoxiarelated DEGs ("NDRG1", "ENO1", "SERPINE1", "ANXA2") was constructed, and high- and low-risk groups of HCC were established by the median of the model risk score. RESULTS: The survival analysis revealed significant differences between the two groups in both datasets, with the results of the AUC of the ROC curve of 1, 3, and 5 years in two datasets indicating the robustness of the prognosis model. Meanwhile, for the TCGA-LIHC data, the immune characteristics between the two groups revealed that the low-risk group presented higher levels of activated NK cells, monocytes, and M2 macrophages, and 7 immune checkpoint genes were found upregulated in the high-risk group. Additionally, the two groups have no difference in molecular characteristics (tumor mutational burden, TMB). The proportion of recurrence was higher in the high-risk group, and the correlation between the recurrence month and risk score was negative, indicating high-risk correlates with a short recurrence month. CONCLUSION: In summary, this study shows the association among hypoxic signals, TME, and HCC prognosis and may help reveal potential regulatory mechanisms between hypoxia, tumorigenesis, and metastasis in HCC. The hypoxia-related model demonstrated the potential to be a predictor and drug target of prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Prognóstico , Carcinogênese , Hipóxia/genética , Microambiente Tumoral/genética
14.
Front Endocrinol (Lausanne) ; 14: 1301093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179301

RESUMO

Diabetes is a chronic metabolic disease, and its therapeutic goals focus on the effective management of blood glucose and various complications. Drug combination therapy has emerged as a comprehensive treatment approach for diabetes. An increasing number of studies have shown that, compared with monotherapy, combination therapy can bring significant clinical benefits while controlling blood glucose, weight, and blood pressure, as well as mitigating damage from certain complications and delaying their progression in diabetes, including both type 1 diabetes (T1D), type 2 diabetes (T2D) and related complications. This evidence provides strong support for the recommendation of combination therapy for diabetes and highlights the importance of combined treatment. In this review, we first provided a brief overview of the phenotype and pathogenesis of diabetes and discussed several conventional anti-diabetic medications currently used for the treatment of diabetes. We then reviewed several clinical trials and pre-clinical animal experiments on T1D, T2D, and their common complications to evaluate the efficacy and safety of different classes of drug combinations. In general, combination therapy plays a pivotal role in the management of diabetes. Integrating the effectiveness of multiple drugs enables more comprehensive and effective control of blood glucose without increasing the risk of hypoglycemia or other serious adverse events. However, specific treatment regimens should be tailored to individual patients and implemented under the guidance of healthcare professionals.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hipoglicemia , Animais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glicemia , Hipoglicemia/complicações , Medição de Risco
15.
Methods ; 208: 42-47, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36341922

RESUMO

The adaptor proteins play a crucially important role in regulating lymphocyte activation. Rapid and efficient identification of adaptor proteins is essential for understanding their functions. However, biochemical methods require not only expensive experimental costs, but also long experiment cycles and more personnel. Therefore, a computational method that could accurately identify adaptor proteins is urgently needed. To solve this issue, we developed a classifier that combined the support vector machine (SVM) with the composition of k-Spaced Amino Acid Pairs (CKSAAP) and the amino acid composition (AAC) to identify adaptor proteins. Analysis of variance (ANOVA) was used to select the optimized features which could generate the maximum prediction performance. By examining the proposed model on independent data, we found that the 447 optimized features could achieve an accuracy of 92.39% with an AUC of 0.9766, demonstrating the powerful capabilities of our model. We hope that the proposed model could provide more clues for studying adaptor proteins.


Assuntos
Biologia Computacional , Máquina de Vetores de Suporte , Biologia Computacional/métodos , Aminoácidos/metabolismo , Análise de Variância
16.
Clin Pharmacokinet ; 61(12): 1749-1759, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36369328

RESUMO

BACKGROUND AND OBJECTIVE: In clinical practice, injectable drug combination (IDC) usually provides good therapeutic effects for patients. Numerous clinical studies have directly indicated that inappropriate IDC generates adverse drug events (ADEs). The clinical application of injections is increasing, and many injections lack relevant combination information. It is still a significant need for experienced clinical pharmacists to participate in evidence-based drug decision making, monitor medication safety, and manage drug interactions. Meanwhile, a large number of injection pairs and dosage combinations limit exhaustive screening. Here, we present a prediction framework, called DeepIDC, that can expediently screen the feasibility of IDCs using heterogeneous information with deep learning. This is the first specific prediction framework to identify IDCs. METHODS: Since the interaction between the injected drugs may occur in the direct physical and chemical reactions at the time of mixing or may be the indirect interaction of their drug targets and pathways, we used molecular fingerprints, drug-target associations, and drug-pathway associations to convert injections into a string of digital vectors. Then, based on these injection vectors, we combined a bidirectional long short-term memory and a feed-forward neural network to build a prediction model for accurate and instructive prediction of IDC. RESULTS: In three realistic evaluation scenarios, DeepIDC has achieved ideal prediction results. Furthermore, compared with the other five machine-learning methods, the proposed predictor is more efficient and robust. Among the top 30 potential IDCs of each IDC class predicted by DeepIDC, we found that 9 cases were experimentally verified in the literature or available on Drug.com. CONCLUSION: The information we extracted in vivo and in vitro can effectively characterize injectable drugs. DeepIDC developed based on deep learning algorithm provides a valuable unified framework for new IDC discovery, which can make up for the lack of IDC information and predict potential IDC events.


Assuntos
Aprendizado Profundo , Humanos , Combinação de Medicamentos , Algoritmos , Aprendizado de Máquina , Interações Medicamentosas
17.
Imeta ; : e42, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36245702

RESUMO

In China, traditional Chinese medicine (TCM) has been widely used for coronavirus infectious disease 2019 (COVID-19) prevention, treatment, and recovery and has played a part in the battle against the disease. A variety of TCM treatments have been recommended for different stages of COVID-19. But, to the best of our knowledge, a comprehensive database for storing and organizing anti-COVID TCM treatments is still lacking. Herein, we developed TCM2COVID, a manually curated resource of anti-COVID TCM formulas, natural products (NPs), and herbs. The current version of TCM2COVID (1) documents over 280 TCM formulas (including over 300 herbs) with detailed clinical evidence and therapeutic mechanism information; (2) records over 80 NPs with detailed potential therapeutic mechanisms; and (3) launches a useful web server for querying, analyzing and visualizing documented formulas similar to those supplied by the user (formula similarity analysis). In summary, TCM2COVD provides a user-friendly and practical platform for documenting, querying, and browsing anti-COVID TCM treatments, and will help in the development and elucidation of the mechanisms of action of new anti-COVID TCM therapies to support the fight against the COVID-19 epidemic. TCM2COVID is freely available at http://zhangy-lab.cn/tcm2covid/.

18.
Math Biosci Eng ; 19(4): 3597-3608, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35341266

RESUMO

Diabetes is a metabolic disorder caused by insufficient insulin secretion and insulin secretion disorders. From health to diabetes, there are generally three stages: health, pre-diabetes and type 2 diabetes. Early diagnosis of diabetes is the most effective way to prevent and control diabetes and its complications. In this work, we collected the physical examination data from Beijing Physical Examination Center from January 2006 to December 2017, and divided the population into three groups according to the WHO (1999) Diabetes Diagnostic Standards: normal fasting plasma glucose (NFG) (FPG < 6.1 mmol/L), mildly impaired fasting plasma glucose (IFG) (6.1 mmol/L ≤ FPG < 7.0 mmol/L) and type 2 diabetes (T2DM) (FPG > 7.0 mmol/L). Finally, we obtained1,221,598 NFG samples, 285,965 IFG samples and 387,076 T2DM samples, with a total of 15 physical examination indexes. Furthermore, taking eXtreme Gradient Boosting (XGBoost), random forest (RF), Logistic Regression (LR), and Fully connected neural network (FCN) as classifiers, four models were constructed to distinguish NFG, IFG and T2DM. The comparison results show that XGBoost has the best performance, with AUC (macro) of 0.7874 and AUC (micro) of 0.8633. In addition, based on the XGBoost classifier, three binary classification models were also established to discriminate NFG from IFG, NFG from T2DM, IFG from T2DM. On the independent dataset, the AUCs were 0.7808, 0.8687, 0.7067, respectively. Finally, we analyzed the importance of the features and identified the risk factors associated with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Jejum , Humanos , Exame Físico , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/epidemiologia
19.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34864888

RESUMO

Post-translational modification (PTM) refers to the covalent and enzymatic modification of proteins after protein biosynthesis, which orchestrates a variety of biological processes. Detecting PTM sites in proteome scale is one of the key steps to in-depth understanding their regulation mechanisms. In this study, we presented an integrated method based on eXtreme Gradient Boosting (XGBoost), called iRice-MS, to identify 2-hydroxyisobutyrylation, crotonylation, malonylation, ubiquitination, succinylation and acetylation in rice. For each PTM-specific model, we adopted eight feature encoding schemes, including sequence-based features, physicochemical property-based features and spatial mapping information-based features. The optimal feature set was identified from each encoding, and their respective models were established. Extensive experimental results show that iRice-MS always display excellent performance on 5-fold cross-validation and independent dataset test. In addition, our novel approach provides the superiority to other existing tools in terms of AUC value. Based on the proposed model, a web server named iRice-MS was established and is freely accessible at http://lin-group.cn/server/iRice-MS.


Assuntos
Oryza , Processamento de Proteína Pós-Traducional , Acetilação , Biologia Computacional , Modelos Biológicos , Oryza/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...