Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(7): e202317176, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168476

RESUMO

High-energy Li metal batteries (LMBs) consisting of Li metal anodes and high-voltage cathodes are promising candidates of the next generation energy-storage systems owing to their ultrahigh energy density. However, it is still challenging to develop high-voltage nonflammable electrolytes with superior anode and cathode compatibility for LMBs. Here, we propose an active diluent-anion synergy strategy to achieve outstanding compatibility with Li metal anodes and high-voltage cathodes by using 1,2-difluorobenzene (DFB) with high activity for yielding LiF as an active diluent to regulate nonflammable dimethylacetamide (DMAC)-based localized high concentration electrolyte (LHCE-DFB). DFB and bis(fluorosulfonyl)imide (FSI- ) anion cooperate to construct robust LiF-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI), which effectively stabilize DMAC from intrinsic reactions with Li metal anode and enhance the interfacial stability of the Li metal anodes and LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) cathodes. LHCE-DFB enables ultrahigh Coulombic efficiency (98.7 %), dendrite-free, extremely stable and long-term cycling of Li metal anodes in Li || Cu cells and Li || Li cells. The fabricated NCM811 || Li cells with LHCE-DFB display remarkably enhanced long-term cycling stability and excellent rate capability. This work provides a promising active diluent-anion synergy strategy for designing high-voltage electrolytes for high-energy batteries.

2.
J Colloid Interface Sci ; 644: 230-237, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119640

RESUMO

In-situ preparation of polymer electrolytes (PEs) can enhance electrolyte/electrode interface contact and accommodate the current large-scale production line of lithium-ion batteries (LIBs). However, reactive initiators of in-situ PEs may lead to low capacity, increased impedance and poor cycling performance. Flammable and volatile monomers and plasticizers of in-situ PEs are potential safety risks for the batteries. Herein, we adopt lithium difluoro(oxalate)borate (LiDFOB)-initiated in-situ polymerization of solid-state non-volatile monomer 1,3,5-trioxane (TXE) to fabricate PEs (In-situ PTXE). Fluoroethylene carbonate (FEC) and methyl 2,2,2-trifluoroethyl carbonate (FEMC) with good fire retardance, high flash point, wide electrochemical window and high dielectric constant were introduced as plasticizers to improve ionic conductivity and flame retardant property of In-situ PTXE. Compared with previously reported in-situ PEs, In-situ PTXE exhibits distinct merits, including free of initiators, non-volatile precursors, high ionic conductivity of 3.76 × 10-3 S cm-1, high lithium-ion transference number of 0.76, wide electrochemical stability window (ESW) of 6.06 V, excellent electrolyte/electrode interface stability and effectively inhibition of Li dendrite growth on the lithium metal anode. The fabricated LiFePO4 (LFP)/Li batteries with In-situ PTXE achieve significantly boosted cycle stability (capacity retention rate of 90.4% after 560 cycles) and outstanding rate capability (discharge capacity of 111.7 mAh g-1 at 3C rate).

3.
ACS Appl Mater Interfaces ; 14(43): 48694-48704, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36279165

RESUMO

High-concentration electrolytes (HCEs) can effectively enhance interface stability and cycle performance of Li metal batteries (LMBs). However, HCEs suffer from low ionic conductivity, high viscosity, high cost, and high density. Herein, fluorobenzene (FB) diluted localized high-concentration electrolytes (LHCEs) consisting of lithium bis(fluorosulfonyl)imide (LiFSI)/triethyl phosphate (TEP)/FB are developed. 2.3 M LHCE can reserve concentrated Li+-FSI--TEP solvation structures. Diluent FB possesses low density, low viscosity, low cost, low dielectric constant, low LUMO, and a good fluorine-donating property, which can significantly reduce viscosity, improve ionic conductivity, promote the formation of LiF-rich SEI, and enhance interaction of Li+-TEP and Li+-FSI- ion-pairs of the electrolytes. 2.3 M LHCE is a highly safe nonflammable electrolyte. 2.3 M LHCE can effectively inhibit dendrite growth on Li metal anode. 2.3 M LHCE endows LiFePO4 cells with good rate capability (discharge capacity of 112.7 mAh g-1 at 5 C rate) and excellent cycling performance (capacity retention of 95.4% after 1000 cycles). 2.3 M LHCE also shows good compatibility with LiNi0.8Co0.1Mn0.1O2 and exhibits outstanding cycle stability (capacity retention of 86.4% after 500 cycles). Therefore, 2.3 M LHCE is a promising electrolyte for practical applications in LMBs.

4.
Adv Mater ; 32(26): e2000575, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449574

RESUMO

Garnet-type solid-state electrolytes (SSEs) are promising for the realization of next-generation high-energy-density Li metal batteries. However, a critical issue associated with the garnet electrolytes is the poor physical contact between the Li anode and the garnet SSE and the resultant high interfacial resistance. Here, it is reported that the Li|garnet interface challenge can be addressed by using Li metal doped with 0.5 wt% Na (denoted as Li*) and melt-casting the Li* onto the garnet SSE surface. A mechanistic study, using Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) as a model SSE, reveals that Li2 CO3 resides within the grain boundaries of newly polished LLZTO pellet, which is difficult to remove and hinders the wetting process. The Li* melt can phase-transfer the Li2 CO3 from the LLZTO grain boundary to the Li*'s top surface, and therefore facilitates the wetting process. The obtained Li*|LLZTO demonstrates a low interfacial resistance, high rate capability, and long cycle life, and can find applications in future all-solid-state batteries (e.g., Li*|LLZTO|LiFePO4 ).

5.
ACS Appl Mater Interfaces ; 11(32): 28968-28977, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31334632

RESUMO

A slightly cross-linked lithium borate containing single ion-conducting polymer (LBSIP) as a bifunctional binder for lithium sulfur batteries is designed and fabricated via a one-step thiol-ene click reaction. The LBSIP binder exhibits a maximum peeling strength of over 600 mN mm-1 between the sulfur cathode and aluminum foil, together showing a high lithium ion diffusion coefficient of 2.1 × 10-12 cm2 s-1. Owing to the unique electron-donating groups, the binder can provide a good ionic conductive network and a dramatically enhanced polysulfide-trapping feature. The strong interaction between electron-donating groups of LBSIP with Li2S6 was confirmed by the 7Li-NMR analysis and density-functional theory calculation. The cathode using the LBSIP binder exhibited a high Coulombic efficiency of ∼100% and an initial specific capacity of 712 mAh g-1 with a capacity fading rate of 0.06% per cycle after 500 cycles at 0.5 C. Even at a high current rate of 2 C, a reversible capacity of over 500 mAh g-1 was still obtained. However, the capacity of the cathode using the PVDF binder decreased to 331 mAh g-1 after 180 cycles at 0.5 C. This work is very attractive for the rational design of functional binders for Li-S batteries with both ion-transporting and polysulfide-trapping features.

6.
Small ; : e1801420, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29971933

RESUMO

A novel single-ion conducting polymer electrolyte (SIPE) membrane with high lithium-ion transference number, good mechanical strength, and excellent ionic conductivity is designed and synthesized by facile coupling of lithium bis(allylmalonato) borate (LiBAMB), pentaerythritol tetrakis (2-mercaptoacetate) (PETMP) and 3,6-dioxa-1,8-octanedithiol (DODT) in an electrospun poly(vinylidienefluoride) (PVDF) supporting membrane via a one-step photoinitiated in situ thiol-ene click reaction. The structure-optimized LiBAMB-PETMP-DODT (LPD)@PVDF SIPE shows an outstanding ionic conductivity of 1.32 × 10-3 S cm-1 at 25 °C, together with a high lithium-ion transference number of 0.92 and wide electrochemical window up to 6.0 V. The SIPE exhibits high tensile strength of 7.2 MPa and elongation at break of 269%. Due to these superior performances, the SIPE can suppress lithium dendrite growth, which is confirmed by galvanostatic Li plating/stripping cycling test and analysis of morphology of Li metal electrode surface after cycling test. Li|LPD@PVDF|Li symmetric cell maintains an extremely stable and low overpotential without short circuiting over the 1050 h cycle. The Li|LPD@PVDF|LiFePO4 cell shows excellent rate capacity and outstanding cycle performance compared to cells based on a conventional liquid electrolyte (LE) with Celgard separator. The facile approach of the SIPE provides an effective and promising electrolyte for safe, long-life, and high-rate lithium metal batteries.

7.
ACS Appl Mater Interfaces ; 8(49): 33642-33648, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960441

RESUMO

This work demonstrates the facile and efficient synthesis of a novel environmentally friendly CO2-based multifunctional polycarbonate single-ion-conducting polymer electrolyte with good electrochemistry performance. The terpolymerizations of CO2, propylene epoxide (PO), and allyl glycidyl ether (AGE) catalyzed by zinc glutarate (ZnGA) were performed to generate poly(propylene carbonate allyl glycidyl ether) (PPCAGE) with various alkene groups contents which can undergo clickable reaction. The obtained terpolymers exhibit an alternating polycarbonate structure confirmed by 1H NMR spectra and an amorphous microstructure with glass transition temperatures (Tg) lower than 11.0 °C evidenced by differential scanning calorimetry analysis. The terpolymers were further functionalized with 3-mercaptopropionic acid via efficient thiol-ene click reaction, followed by reacting with lithium hydroxide, to afford single-ion-conducting polymer electrolytes with different lithium contents. The all-solid-state polymer electrolyte with the 41.0 mol % lithium containing moiety shows a high ionic conductivity of 1.61 × 10-4 S/cm at 80 °C and a high lithium ion transference number of 0.86. It also exhibits electrochemical stability up to 4.3 V vs Li+/Li. This work provides an interesting design way to synthesize an all-solid-state electrolyte used for different lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...