Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanoscale ; 16(13): 6748-6760, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38497195

RESUMO

Compounding of suitable fillers with PEO-based polymers is the key to forming high-performance electrolytes with robust network structures and homogeneous Li+-transport channels. In this work, we innovatively and efficiently prepared Al2O3 nanofibers and deposited an aqueous dispersion of Al2O3 into a membrane via vacuum filtration to construct a nanofiber membrane with a three-dimensional (3D) network structure as the backbone of a PEO-based solid-state electrolyte. The supporting effect of the nanofiber network structure improved the mechanical properties of the reinforced composite solid-state electrolyte and its ability to inhibit the growth of Li dendrites. Meanwhile, interconnected nanofibers in the PEO-based electrolyte and the strong Lewis acid-base interactions between the chemical groups on the surface of the inorganic filler and the ionic species in the PEO matrix provided facilitated pathways for Li+ transport and regulated the uniform deposition of Li+. Moreover, the interaction between Al2O3 and lithium salts as well as the PEO polymer increased free Li+ concentration and maintained its stable electrochemical properties. Hence, assembled Li/Li symmetric cells achieved a cycle life of more than 2000 h. LFP/Li and NMC811/Li cells provided high discharge specific capacities of up to 146.9 mA h g-1 (0.5C and 50 °C) and 166.9 mA h g-1 (0.25C and 50 °C), respectively. The prepared flexible self-supporting 3D nanofiber network structure construction can provide a simple and efficient new strategy for the exploitation of high-performance solid-state electrolytes.

2.
Nanoscale ; 16(5): 2121-2168, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38206085

RESUMO

Converting CO2 into valuable chemicals can provide a new path to mitigate the greenhouse effect, achieving the aim of "carbon neutrality" and "carbon peaking". Among numerous electrocatalysts, Zn-based materials are widely distributed and cheap, making them one of the most promising electrocatalyst materials to replace noble metal catalysts. Moreover, the Zn metal itself has a certain selectivity for CO. After appropriate modification, such as oxide derivatization, structural reorganization, reconstruction of the surfaces, heteroatom doping, and so on, the Zn-based electrocatalysts can expose more active sites and adjust the d-band center or electronic structure, and the FE and stability of them can be effectively improved, and they can even convert CO2 to multi-carbon products. This review aims to systematically describe the latest progresses of modified Zn-based electrocatalyst materials (including organic and inorganic materials) in the electrocatalytic carbon dioxide reduction reaction (eCO2RR). The applications of modified Zn-based catalysts in improving product selectivity, increasing current density and reducing the overpotential of the eCO2RR are reviewed. Moreover, this review describes the reasonable selection and good structural design of Zn-based catalysts, presents the characteristics of various modified zinc-based catalysts, and reveals the related catalytic mechanisms for the first time. Finally, the current status and development prospects of modified Zn-based catalysts in eCO2RR are summarized and discussed.

3.
Small ; : e2308058, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286621

RESUMO

The unsatisfactory lithium-ion conductivity (σ) and limited mechanical strength of polymer solid electrolytes hinder their wide applications in solid-state lithium metal batteries (SSLMBs). Here, a thin piezoelectric polymer solid electrolyte integrating electromechanical coupling and ferroelectric polarization effects has been designed and prepared to achieve long-term stable cycling of SSLMBs. The ferroelectric Bi4 Ti3 O12 nanoparticle (BIT NPs) loaded poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) piezoelectric nanofibers (B-P NFs) membranes are introduced into the poly(ethylene oxide) (PEO) matrix, endowing the composite electrolyte with unique polarization and piezoelectric effects. The piezoelectric nanofiber membrane with a 3D network structure not only promotes the dissociation of lithium (Li) salts through the polarization effect but also cleverly utilizes the coupling effect of a mechanical stress-local electric field to achieve dynamic regulation of the Li electroplating process. Through the corresponding experimental tests and density functional theory calculations, the intrinsic mechanism of piezoelectric electrolytes improving σ and suppressing Li dendrites is fully revealed. The obtained piezoelectric electrolyte has achieved stable cycling of LiFePO4 batteries over 2000 cycles and has also shown good practical application potential in flexible pouch batteries.

4.
Small ; : e2306367, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054805

RESUMO

Developing highly efficient bi-functional noble-metal-free oxygen electrocatalysts with low-cost and scalable synthesis approach is challenging for zinc-air batteries (ZABs). Due to the flexible valence state of manganese, MnF2 is expected to provide efficient OER. However, its insulating properties may inhibit its OER process to a certain degree. Herein, during the process of converting the manganese source in the precursor of porous carbon nanofibers (PCNFs) to manganese fluoride, the manganese source is changed to manganese acetate, which allows PCNFs to grow a large number of hollow carbon nanorods (HCNRs). Meanwhile, manganese fluoride will transform from the aggregation state into uniformly dispersed MnF2 nanodots, thereby achieving highly efficient OER catalytic activity. Furthermore, the intrinsic ORR catalytic activity of the HCNRs/MnF2 @PCNFs can be enhanced due to the charge modulation effect of MnF2 nanodots inside HCNR. In addition, the HCNRs stretched toward the liquid electrolyte can increase the capture capacity of dissolved oxygen and protect the inner MnF2 , thereby enhancing the stability of HCNRs/MnF2 @PCNFs for the oxygen electrocatalytic process. MnF2 surface-modulated HCNRs can strongly enhance ORR activity, and the uniformly dispersed MnF2 can also provide higher OER activity. Thus, the prepared HCNRs/MnF2 @PCNFs obtain efficient bifunctional oxygen catalytic ability and high-performance rechargeable ZABs.

5.
ACS Nano ; 17(22): 22872-22884, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37947375

RESUMO

The development of highly safe and low-cost solid polymer electrolytes for all-solid-state lithium batteries (ASSLBs) has been hindered by low ionic conductivity, poor stability under high-voltage conditions, and severe lithium-dendrite-induced short circuits. In this study, Li-doped MgO nanofibers bearing reactive surface defects of scaled-up production are introduced to the poly(ethylene oxide) (PEO)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) system. The characterizations and density functional theory calculations reveal that TFSI- is strongly adsorbed on the nanofibers based on the electrostatic interactions of surface oxygen vacancies and the formation of Li-N and Li-O bonds derived from the exposed Li. Additionally, the introduced Li exposed near oxygen vacancies may be liberated from the lattice and engage in the formation of Li-rich domains. Therefore, a high ionic conductivity of 1.48 × 10-4 S cm-1 for the solid electrolyte at 30 °C and excellent cycling stability for the assembled battery, with a discharge capacity retention of 85.2% after 1500 cycles at 2C, can be achieved. Furthermore, the increased coordination of EO chains in the Li-rich region and chemical interactions with nanofibers substantially improve the antioxidant stability of the solid electrolyte, endowing the LiNi0.8Co0.1Mn0.1O2/Li battery with a long lifespan of more than 700 cycles. The results of this study suggest that the surface defects of 1D oxide nanostructures can substantially improve the Li+ diffusion kinetics. This study provides insight into the construction of Li-rich regions for high-voltage ASSLBs.

6.
J Colloid Interface Sci ; 647: 163-173, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37247480

RESUMO

Porous carbon-based electrocatalysts for cathodes in zinc-air batteries (ZABs) are limited by their low catalytic activity and poor electronic conductivity, making it difficult for them to be quickly commercialized. To solve these problems of ZABs, copper nanodot-embedded N, F co-doped porous carbon nanofibers (CuNDs@NFPCNFs) are prepared to enhance the electronic conductivity and catalytic activity in this study. The CuNDs@NFPCNFs exhibit excellent oxygen reduction reaction (ORR) performance based on experimental and density functional theory (DFT) simulation results. The copper nanodots (CuNDs) and N, F co-doped carbon nanofibers (NFPCNFs) synergistically enhance the electrocatalytic activity. The CuNDs in the NFPCNFs also enhance the electronic conductivity to facilitate electron transfer during the ORR. The open porous structure of the NFPCNFs promotes the fast diffusion of dissolved oxygen and the formation of abundant gas-liquid-solid interfaces, leading to enhanced ORR activity. Finally, the CuNDs@NFPCNFs show excellent ORR performance, maintaining 92.5% of the catalytic activity after a long-term ORR test of 20000 s. The CuNDs@NFPCNFs also demonstrate super stable charge-discharge cycling for over 400 h, a high specific capacity of 771.3 mAh g-1 and an excellent power density of 204.9 mW cm-2 as a cathode electrode in ZABs. This work is expected to provide reference and guidance for research on the mechanism of action of metal nanodot-enhanced carbon materials for ORR electrocatalyst design.

7.
Small ; 19(34): e2301521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093187

RESUMO

A 3D crimped sulfonated polyethersulfone-polyethylene oxide(C-SPES/PEO) nanofiber membrane and long-range lanthanum cobaltate(LaCoO3 ) nanowires are collectively doped into a PEO matrix to acquire a composite solid electrolyte (C-SPES-PEO-LaCoO3 ) for all-solid-state lithium metal batteries(ASSLMBs). The 3D crimped structure enables the fiber membrane to have a large porosity of 90%. Therefore, under the premise of strongly guaranteeing the mechanical properties of C-SPES-PEO-LaCoO3 , the ceramic nanowires conveniently penetrated into the 3D crimped SPES nanofiber without being blocked, which can facilitate fast ionic conductivity by forming 3D continuous organic-inorganic ion transport pathways. The as-prepared electrolyte delivers an excellent ionic conductivity of 2.5 × 10-4  S cm-1 at 30 °C. Density functional theory calculations indicate that the LaCoO3 nanowires and 3D crimped C-SPES/PEO fibers contribute to Li+ movement. Particularly, the LiFePO4 /C-SPES-PEO-LaCoO3 /Li and NMC811/C-SPES-PEO-LaCoO3 /Li pouch cell have a high initial discharge specific capacity of 156.8 mAh g-1 and a maximum value of 176.7 mAh g-1 , respectively. In addition, the universality of the penetration of C-SPES/PEO nanofibers to functional ceramic nanowires is also reflected by the stable cycling performance of ASSLMBs based on the electrolytes, in which the LaCoO3 nanowires are replaced with Gd-doped CeO2 nanowires. The work will provide a novel approach to high performance solid-state electrolytes.

8.
J Colloid Interface Sci ; 634: 949-962, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571857

RESUMO

In this study, the yttrium trifluoride-doped polyacrylonitrile(PAN) based carbon nanofibers (YF3-PAN-CNFs) are successfully designed and prepared through the electro-blow spinning and carbonization strategies. And the YF3-PAN-CNFs acted as main materials of functional layer for modifying separator of lithium metal batteries are systematically studied and analyzed. The prepared CNFs have long-range ordered structures and high conductivity, which can extremely improve the transport of lithium ions and electrons during charge-discharge processes. The lithiophilic YF3 nanoparticles formed in the carbonization process can endow enough active sites to produce alloying reaction with Li, which makes the plating/stripping of Li more uniform. For the assembled Li||lithium iron phosphate (LiFePO4) battery, it still maintains a high specific discharge capacity of 137.1 mAh g-1 after 500 cycles at 0.5 C, which there is almost no specific discharge capacity degradation after long cycle. The modified separator for the Li||Li symmetric battery can effectively suppress the growth of lithium dendrites and improve cycle stability. Meanwhile, based on the strong chemical bonding between YF3 and lithium polysulfide combining the effectively physical confinement of the YF3-PAN-CNFs coating layer, the "shuttle effect" of lithium polysulfide also can be greatly suppressed. Thus the assembled Li||S battery using the separator has excellent electrochemical performance. Therefore, the YF3-PAN-CNFs modified separator will have a promising application prospect in lithium metal batteries even other high performance secondary batteries.

9.
Nanomaterials (Basel) ; 12(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296801

RESUMO

Gas sensors play an irreplaceable role in industry and life. Different types of gas sensors, including metal-oxide sensors, are developed for different scenarios. Titanium dioxide is widely used in dyes, photocatalysis, and other fields by virtue of its nontoxic and nonhazardous properties, and excellent performance. Additionally, researchers are continuously exploring applications in other fields, such as gas sensors and batteries. The preparation methods include deposition, magnetron sputtering, and electrostatic spinning. As researchers continue to study sensors with the help of modern computers, microcosm simulations have been implemented, opening up new possibilities for research. The combination of simulation and calculation will help us to better grasp the reaction mechanisms, improve the design of gas sensor materials, and better respond to different gas environments. In this paper, the experimental and computational aspects of TiO2 are reviewed, and the future research directions are described.

10.
Chem Asian J ; 17(20): e202200669, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35924719

RESUMO

In this study, a novel fluorine-containing emulsion and 3, 4-ethylene dioxyethiophene (EDOT) co-doped poly-m-phenyleneisophthalamide (PMIA) nanofiber membrane (EDOT/F-PMIA), as the separator of lithium-sulfur battery, was tactfully prepared via electrospinning. The multi-scale EDOT/F-PMIA nanofiber membrane can be served as the matrix to fabricate gel polymer electrolyte (GPE). Furthermore, under the influence of fluorine-containing emulsion and EDOT, the PMIA-based GPE possessed excellent thermostability, eminent mechanical property and well-distributed lithium-ions flux. Especially, the pore size of the nanofiber membrane decreased after adding the fluorine-containing emulsion and EDOT. And the element S and O in EDOT with lone pair electrons were capable of binding with the lithium polysulfides, which was conducive to inhibiting the "shuttle effect" of lithium polysulfides by combining the physical confinement and chemical binding. Therefore, the lithium-sulfur battery assembled with the EDOT/F-PMIA separator exhibited excellent electrochemical performance, which delivered a high initial capacity of 851.9 mAh g-1 and maintained a discharge capacity of 641.1 mAh g-1 after 200 cycles with a capacity retention rate of 75.2% at 0.5 C.

11.
J Colloid Interface Sci ; 628(Pt A): 247-258, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35932664

RESUMO

Rational design of separators is especially critical to solve the "shuttle effect" of lithium polysulfides (LiPSs) and the sluggish redox kinetics in lithium-sulfur batteries (LSBs). Here, the multi-functional nanocomposite involving Co-doped molybdenum phosphide (Co-MoP) nanofibers and porous carbon nanofibers (PCNFs) is designed and prepared through electro-blow spinning and phosphating process, which possesses multiple adsorption and catalytic sites and is acted as the functional material for LSBs separators. In this multifunctional nanocomposite, the prepared Co-MoP nanofibers can provide internal adsorption and catalytic sites for LiPSs conversion. And the interconnected nitrogen-doped PCNFs can be elaborated an efficient LiPSs mediator and accommodate the huge volume changes in the reaction process for LSBs. Benefiting from the multiple adsorptive and catalytic sites of the developed functional materials, the assembled LSBs with a Co-MoP/PCNFs modified separator display outstanding electrochemical performances, including an admirable capacity retention of 770.4 mAh g-1 after 400 cycles at 1.0 C, only 0.08 % capacity decay per cycle at 2.0 C, rate performance up to 5 C, and also decent areal capacity even under a high sulfur loading of 4.9 mg cm-2. The work provides a facile pathway towards multifunctional separators in LSBs, and it may also help deepen preparation method of MoP through the electrostatic blowing/electrospinning technology in other related energy storage fields.

12.
RSC Adv ; 12(30): 19512-19527, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865576

RESUMO

Molybdenum disulfide (MoS2) is a two-dimensional (2D) layered material with a graphene-like structure that has attracted attention because of its large specific surface area and abundant active sites. In addition, the compounding of MoS2 with other materials can enhance the performance in applications such as batteries, catalysts, and optoelectronic devices, etc. MoS2 is prepared by various methods, among which chemical deposition and hydrothermal methods are widely used. In this review, we focus on summarizing the applications of MoS2 and MoS2 composite nanomaterials in rechargeable ion batteries, catalysts for water splitting and gas sensors, and briefly outline the preparation methods.

13.
Small ; 18(8): e2104469, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35015928

RESUMO

Lithium-sulfur batteries (LSBs) are attracting much attention due to their high theoretical energy density and are considered to be the predominant competitors for next-generation energy storage systems. The practical commercial application of LSBs is mainly hindered by the severe "shuttle effect" of the lithium polysulfides (LiPSs) and the serious damage of lithium dendrites. Various carbon materials with different characteristics have played an important role in overcoming the above-mentioned problems. Carbon spheres (CSs) are extensively explored to enhance the performance of LSBs owing to their superior structures. The review presents the state-of-the-art advances of CSs for advanced high-energy LSBs, including their preparation strategies and applications in inhibiting the "shuttle effect" of the LiPSs and protecting lithium anodes. The unique restriction effect of CSs on LiPSs is explained from three working mechanisms: physical confinement, chemical interaction, and catalytic conversion. From the perspective of interfacial engineering and 3D structure designing, the protective effect of CSs on the lithium anode is also analyzed. Not only does this review article contain a summary of CSs in LSBs, but also future directions and prospects are discussed. The systematic discussions and suggested directions can enlighten thoughts in the reasonable design of CSs for LSBs in near future.


Assuntos
Carbono , Lítio , Carbono/química , Fontes de Energia Elétrica , Eletrodos , Lítio/química , Enxofre
14.
J Colloid Interface Sci ; 607(Pt 2): 922-932, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34571313

RESUMO

Lithium-sulfur (Li-S) batteries have attracted extensive attention in the field of energy storage due to their high energy density and low cost. However, conundrums such as severe polarization, poor cyclic performance originating from shuttle effect of lithium polysulfides and sluggish sulfur redox kinetics are stumbling blocks for their practical application. Herein, a novel sulfur cathode integrating sulfur and polyvinylpyrrolidone(PVP)-derived N-doped porous carbon nanofibers (PCNFs) with embedded CoF3 and YF3 nanoparticles are designed and prepared though the electrostatic blowing technology and carbonization process. The unique flexible PCNFs with embedded polar CoF3 and YF3 nanoparticles not only offer enough voids for volume expansion to maintain the structural stability during the electrochemical process, but also promote the physical encapsulation and chemical entrapment of all sulfur species. Moreover, the uniform distribution of YF3/CoF3 nanoparticles also can expose more binding active sites to lithium polysulfide and present more catalytic sites to the greatest extent. Therefore, the assembled cells with the prepared cathode exhibited stable performances with an outstanding initial capacity of 1055.2 mAh g-1 and an extended cycling stability of 0.029% per cycle during the 300 cycles at 0.5C. Even at a high sulfur loading of 2.1 mg cm-2, The YF3/CoF3 doped-PCNFs exhibited a high discharge specific capacity of 1038 mAh g-1, and the decay rate is also as low as 0.05% over 1000 cycles. This work shares a convenient and safe strategy for the synthesis of multi-dimension, dual-functional and stable superstructure electrode for advanced Li-S batteries.

15.
Chem Asian J ; 16(19): 2852-2870, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34265166

RESUMO

Lithium-sulfur (Li-S) batteries, possessing excellent theoretical capacities, low cost and nontoxicity, are one of the most promising energy storage battery systems. However, poor conductivity of elemental S and the "shuttle effect" of lithium polysulfides hinder the commercialization of Li-S batteries. These problems are closely related to the interface problems between the cathodes, separators/electrolytes and anodes. The review focuses on interface issues for advanced separators/electrolytes based on nanomaterials in Li-S batteries. In the liquid electrolyte systems, electrolytes/separators and electrodes system can be decorated by nano materials coating for separators and electrospinning nanofiber separators. And, interface of anodes and electrolytes/separators can be modified by nano surface coating, nano composite metal lithium and lithium nano alloy, while the interface between cathodes and electrolytes/separators is designed by nano metal sulfide, nanocarbon-based and other nano materials. In all solid-state electrolyte systems, the focus is to increase the ionic conductivity of the solid electrolytes and reduce the resistance in the cathode/polymer electrolyte and Li/electrolyte interfaces through using nanomaterials. The basic mechanism of these interface problems and the corresponding electrochemical performance are discussed. Based on the most critical factors of the interfaces, we provide some insights on nanomaterials in high-performance liquid or state Li-S batteries in the future.

16.
Nanoscale Adv ; 3(4): 1136-1147, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36133294

RESUMO

The mounting requirements for electric apparatus and vehicles stimulate the rapid progress of energy storage systems. Lithium (Li) metal is regarded as one of the most prospective anodes for high-performance cells. However, the uneven dendrite growth is one of the primary conundrums that hampers the use of the Li metal anode in rechargeable Li batteries. Achieving even Li deposition is crucial to solve this concern. In this study, a stable interlayer based on electrospun flexible MnO nanoparticle/nitrogen (N)-doped (polyimide) PI-based porous carbon nanofiber (MnO-PCNF) films was effectively prepared via electrospinning and in situ growth of MnO to reduce the growth of Li dendrites. It is revealed that the attraction of implanted MnO towards Li, the lithiophilic nature of N dopants and the capillary force of porous architectures are beneficial to the preeminent Li wettability of the MnO-PCNF interlayer. Furthermore, the wettable, stable and conductive structure of the MnO-PCNF interlayer can be retained well, offering rapid charge transfer to Li redox reactions, reduced local current density during the cycling process and homogeneous distribution of deposited Li. Consequently, anodes with MnO-PCNF interlayers can relieve the volume change and inhibit the growth of Li dendrites, demonstrating a remarkable lifetime for lithium metal cells at high current.

17.
J Power Sources ; 475: 228663, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863551

RESUMO

All-solid-state electrolytes have received extensive attention due to their excellent safety and good electrochemical performance. However, due to the harsh conditions of the preparation process, the commercial production of all-solid-state electrolytes remains a challenge. The outbreak of the novel coronavirus pneumonia (COVID-19) has caused great inconvenience to people, while also allowing soft, lightweight and mass-producible non-woven fabrics in masks come into sight. Here, a polymer/polymer solid composite electrolyte is obtained by introducing the polyamide 6 (PA6) microfiber non-woven fabric into PEO polymer through the hot-pressing method. The addition of the PA6 non-woven fabric with lithium-philic properties can not only reduce the crystallinity of the polymer, but also provide more functional transmission sites and then promote the migration of lithium ions at the molecular level. Moreover, due to the sufficient mechanical strength and flexibility of the PA6 non-woven fabric, the composite electrolyte shows excellent inhibition ability of lithium dendrite growth and high electrochemical stability. The novel design concept of introducing low-cost and large-scale production of non-woven fabrics into all-solid-state composite electrolytes to develop high-performance lithium metal batteries is attractive, and can also be broadened to the combination of different types of polymers to meet the needs of various batteries.

18.
Nanoscale ; 12(26): 14279-14289, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32609141

RESUMO

All-solid-state polymer electrolytes have received widespread attention due to their superior safety over liquid electrolytes that are prone to leaks. However, poor ionic conductivity and uncontrollable lithium dendrite growth have greatly limited the rapid development of polymer electrolytes. Hence, we report a composite polymer electrolyte combining a polyacrylonitrile (PAN) electrospun fiber membrane, flexible polydimethylsiloxane (PDMS) macromolecules and a polyethylene oxide (PEO) polymer. The introduction of PDMS with a highly flexible molecular chain, ultra-low glass transition energy and high free volume can help optimize lithium ion migration paths and improve the interface compatibility between the electrolyte and the electrode. In addition, the nano-network structure of the PAN nanofiber membrane can promote the interaction between adjacent polymer molecular chains and improve the mechanical properties of the composite electrolyte to suppress the lithium dendrite growth. The synergistic effect of the PDMS and PAN electrospun nanofiber membranes endows the composite electrolyte with superior ionic conductivity and excellent electrochemical stability towards lithium metal. The interface impedance of the Li/Li symmetric battery with the composite electrolyte after 15 days of continuous standing has no significant change compared with the initial state, and the battery can maintain stable cycling for 1200 h without short circuit under a dynamic current of 0.3 mA cm-2. The obtained composite polymer electrolyte has potential application prospects in the field of high-energy lithium metal batteries.

19.
Nanoscale ; 11(44): 21324-21339, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31670739

RESUMO

In this study, semi-closed YF3-doped 1D carbon nanofibers with 3D porous networks (SC-YF3-doped 3D in 1D CNFs) are fabricated for the first time via electro-blown spinning technology. The internal 3D porous networks not only offer a stable 3D electrode structure to accommodate the volume expansion, but also enable a high sulfur loading (80%). More importantly, the external semi-enclosed carbon layer maintains outstanding conductivity and further blocks polysulfide diffusion, which significantly breaks the limitation of a traditional carbon matrix. On the other hand, the YF3 nanoparticles are beneficial for forming more uniform fluorinating electrode interphases, achieving the excellent synergistic effect of chemical and physical adsorption to polysulfide. Therefore, the assembled Li-S batteries exhibit a high reversible discharge capacity of 954.2 mA h g-1 with a decay of merely 0.043% per cycle after 600 cycles at 1C rate. Moreover, the discharge capacity decay can be as low as 0.029% per cycle during 800 cycles at a high current density of 2C rate. Even at a high rate of 5C, the cells still possess a favorable capacity of 636.5 mA h g-1 while steadily operating for 700 cycles with a capacity decay rate of merely 0.056%, implying the great potential of this stable semi-closed cathode structure for industrialization.

20.
ACS Appl Mater Interfaces ; 11(43): 39979-39990, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31593437

RESUMO

A novel flower-like MIL-53(Al)-NH2 nanofiber (MNF) was successfully constructed, in which the electro-blown spinning Al2O3 nanofibers were introduced as Al precursors to coordinate with ligand in hydrothermal reaction for the formation of MOFs nanofibers. By incorporating the functional and consecutive MNFs fillers in sulfonated poly(ether sulfone) (SPES) matrix, high-performance MNFs@SPES hybrid membranes were obtained. Specifically, the peak stress strength could be strengthened to 33.42 MPa and the proton conductivity was remarkably improved to 0.201 S cm-1 as MNFs content increased to 5 wt %, achieving a simultaneous improvement on proton conduction and membrane stability. The highly promoted performance could be ascribed to the synergy advantages of unique structure and amino modification of MNFs: (1) The flower-like nanofiber structure of MNFs with high surface area could be beneficial to construct long-range and compatible interfaces between MNFs and SPES matrix, leading to sufficient continuous proton pathways as well as strengthened stability for the hybrid membrane. (2) The hydrophilic MNFs rendered the hybrid membrane with sufficient water retention for proton transfer via Vehicle mechanism. (3) Functional -NH2 groups of MNFs and -SO3H groups of SPES were consecutively and tightly bonded via acid-base electrostatic interactions, which further accelerated the proton conduction via Grotthuss hopping mechanism and effectively suppressed the methanol penetration in the meanwhile for the MNFs@SPES hybrid membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...