Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4902-4907, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802832

RESUMO

Malaria, one of the major global public health events, is a leading cause of mortality and morbidity among children and adults in tropical and subtropical regions(mainly in sub-Saharan Africa), threatening human health. It is well known that malaria can cause various complications including anemia, blackwater fever, cerebral malaria, and kidney damage. Conventionally, cardiac involvement has not been listed as a common reason affecting morbidity and mortality of malaria, which may be related to ignored cases or insufficient diagnosis. However, the serious clinical consequences such as acute coronary syndrome, heart failure, and malignant arrhythmia caused by malaria have aroused great concern. At present, antimalarials are commonly used for treating malaria in clinical practice. However, inappropriate medication can increase the risk of cardiovascular diseases and cause severe consequences. This review summarized the research advances in the cardiovascular complications including acute myocardial infarction, arrhythmia, hypertension, heart failure, and myocarditis in malaria. The possible mechanisms of cardiovascular diseases caused by malaria were systematically expounded from the hypotheses of cell adhesion, inflammation and cytokines, myocardial apoptosis induced by plasmodium toxin, cardiac injury secondary to acute renal failure, and thrombosis. Furthermore, the effects of quinolines, nucleoprotein synthesis inhibitors, and artemisinin and its derivatives on cardiac structure and function were summarized. Compared with the cardiac toxicity of quinolines in antimalarial therapy, the adverse effects of artemisinin-derived drugs on heart have not been reported in clinical studies. More importantly, the artemisinin-derived drugs demonstrate favorable application prospects in the prevention and treatment of cardiovascular diseases, and are expected to play a role in the treatment of malaria patients with cardiovascular diseases. This review provides reference for the prevention and treatment of malaria-related cardiovascular complications as well as the safe application of antimalarials.


Assuntos
Antimaláricos , Artemisininas , Doenças Cardiovasculares , Insuficiência Cardíaca , Malária Cerebral , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Artemisininas/farmacologia , Malária Cerebral/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Arritmias Cardíacas/tratamento farmacológico
2.
Ecotoxicol Environ Saf ; 234: 113379, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278994

RESUMO

Exposure to diesel exhaust particles (DEP) increases the risk of ischemic heart disease, especially heart attacks and ischemic/thrombotic strokes. Shengmai Yin (SMY) is a traditional Chinese medicine used to treat coronary heart disease. The aim of this study was to determine the protective role of SMY and the mechanism by which SMY affects DEP-induced cardiovascular injury. This study is expected to provide the basis for the development of an adaptive signature of SMY in the prevention of atherosclerotic cardiovascular disease and premature death from global air pollution exposure. We developed animal models of myocardial ischemia and atherosclerosis (AS) in response to DEP exposure. After SMY treatment, serum lipids returned to normal. Aortic plaque area and MMP9 expression were significantly reduced and collagen fiber expression increased after SMY treatment compared to DEP exposure alone. Thus, the risk of plaque formation and vulnerability is reduced. In addition, SMY improved left ventricular structure, morphology, function, blood flow, infarct area, myocardial damage, and ROS accumulation to varying degrees in ApoE-/- mice. These results indicate that the use of SMY is effective, to varying degrees, for the treatment of dyslipidemia, atherosclerosis, myocardial ischemia, and oxidative stress in ApoE-/- mice. SMY has a potential protective effect in DEP-aggravated AS in people with myocardial ischemia.

3.
Microbiol Spectr ; 9(3): e0127821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908430

RESUMO

Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation. Artemisinin combination therapies are the first-line antiplasmodials in countries of endemicity. However, the mechanism of action of artemisinin is unclear, and drug resistance decreases long-term efficacy. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach. Optical microscopy and scanning electron microscopy showed that DHA can cause morphological variation in the iRBC membrane. We identified 125 differentially expressed membrane proteins, and functional analysis indicated structural molecule activity and protein export as key biological functions of the two omics studies. DHA treatment decreased the expression of var gene variants PF3D7_0415700 and PF3D7_0900100 dose-dependently. Western blotting and immunofluorescence analysis showed that DHA treatment downregulates the var gene encoding P. falciparum erythrocyte membrane protein-1 (pfEMP1). pfEMP1 knockout significantly increased artemisinin sensitivity. Results showed that pfEMP1 might be involved in the antimalarial mechanism of action of DHA and pfEMP1 or its regulated factors may be further exploited in antiparasitic drug design. The findings are beneficial for elucidating the potential effects of DHA on iRBC membrane proteins and developing new drugs targeting iRBC membrane. IMPORTANCE Malaria parasites induce morphological and biochemical changes in the membranes of parasite-infected red blood cells (iRBCs) for propagation, with artemisinin combination therapies as the first-line treatments. To understand whether artemisinin targets or interacts with iRBC membrane proteins, this study investigated the molecular changes caused by dihydroartemisinin (DHA), an artemisinin derivative, in Plasmodium falciparum 3D7 using a combined transcriptomic and membrane proteomic profiling approach. We found that DHA can cause morphological changes of iRBC membrane. Structural molecule activity and protein export are considered to be the key biological functions based on the two omics studies. pfEMP1 might be involved in the DHA mechanism of action. pfEMP1 or its regulated factors may be further exploited in antiparasitic drug design. The findings are beneficial for elucidating the potential effects of DHA on iRBC membrane proteins and developing new antimalarial drugs targeting iRBC membrane.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Membrana Celular/patologia , Eritrócitos/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Eritrócitos/metabolismo , Eritropoetina/genética , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Microscopia Eletrônica de Varredura , Peptídeos Cíclicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteômica , Proteínas de Protozoários/biossíntese , Transcriptoma/genética
4.
J Vis Exp ; (178)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34958076

RESUMO

The health problems caused by air pollution (especially particulate pollution) are getting more and more attention, especially among cardiovascular disease patients, which aggravates complicated disorders and causes poor prognosis. The simple myocardial ischemia (MI) or particulate matter (PM) exposure model is unsuitable for such studies of diseases with multiple causes. Here, a method for constructing a composite model combining PM exposure, atherosclerosis, and myocardial ischemia has been described. ApoE-/- mice were fed with a high-fat diet for 16 weeks to develop atherosclerosis, tracheal instillation of PM standard suspension was performed to simulate the pulmonary exposure of PM, and the left anterior descending coronary artery was ligated one week after the last exposure. Tracheal instillation of PM can simulate acute lung exposure while significantly reducing the cost of the experiment; the classic left anterior descending artery ligation with noninvasive tracheal intubation and a new auxiliary expansion device can ensure the animal's survival rate and reduce the difficulty of the operation. This animal model can reasonably simulate the patient's pathological changes of myocardial infarction aggravated by air pollution and provide a reference for the construction of animal models related to studies involving diseases with multiple causes.


Assuntos
Poluição do Ar , Aterosclerose , Doença da Artéria Coronariana , Animais , Aterosclerose/etiologia , Aterosclerose/patologia , Doença da Artéria Coronariana/etiologia , Modelos Animais de Doenças , Humanos , Camundongos , Material Particulado/toxicidade
5.
ACS Infect Dis ; 7(10): 2836-2849, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34254783

RESUMO

Cerebral malaria (CM) is caused by Plasmodium falciparum, resulting in severe sequelae; one of its pathogenic factors is the low bioavailability of nitric oxide (NO). Our previous study suggested that the combination of artesunate (AS) and tetramethylpyrazine (TMP) exerts an adjuvant therapeutic effect on the symptoms of experimental CM (ECM) and that NO regulation plays an important role. In the present study, we further verified the effects of AS+TMP on cerebral blood flow (CBF) and detected NO-related indicators. We focused on the role of NO through S-nitrosoproteome based on previous proteomics data and explored the mechanism of AS+TMP for improving pathological ECM symptoms. We observed that AS+TMP reduces adhesion, increases CBF, and regulates NO synthase (NOS) activity, thereby regulating the level of S-nitrosothiols, such as metabolism-related or neuro-associated receptors, for improving ECM symptoms. These results demonstrated that AS+TMP could be an effective strategy in adjuvant therapy of CM.


Assuntos
Malária Cerebral , Proteína S , Artesunato , Humanos , Malária Cerebral/tratamento farmacológico , Óxido Nítrico , Pirazinas
6.
Front Pharmacol ; 12: 619311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762941

RESUMO

Background and Purpose: Ultrafine particulate matter (UFPM) induces oxidative stress (OS) and is considered to be a risk factor of myocardial ischemia (MI). Shengmai formula (SMF) is a traditional Chinese medicine with antioxidant properties and has been used to treat cardiovascular diseases for a long time. The aim of this study was to explore the protective role of SMF and the mechanism by which it prevents myocardial injury in UFPM-exposed rats with MI. Methods: An MI rat model was established. Animals were randomly divided into five groups: sham, UFPM + MI, SMF (1.08 mg/kg⋅d) + UFPM + MI, SMF (2.16 mg/kg⋅d) + UFPM + MI, and SMF (4.32 mg/kg⋅d) + UFPM + MI. SMF or saline was administrated 7 days before UFPM instillation (100 µg/kg), followed by 24 h of ischemia. Physiological and biochemical parameters were measured, and histopathological examinations were conducted to evaluate myocardial damage. We also explored the potential mechanism of the protective role of SMF using a system pharmacology approach and an in vitro myoblast cell model with small molecule inhibitors. Results: UFPM produced myocardial injuries on myocardial infarct size; serum levels of LDH, CK-MB, and cardiac troponin; and OS responses in the rats with MI. Pretreatment with SMF significantly attenuated these damages via reversing the biomarkers. SMF also improved histopathology induced by UFPM and significantly altered the PI3K/AKT/MAPK and OS signaling pathways. The expression patterns of Cat, Gstk1, and Cyba in the UFPM model group were reversed in the SMF-treated group. In in vitro studies, SMF attenuated UFPM-induced reactive oxygen species production, mitochondrial damage, and OS responses. The PI3K/AKT/p38 MAPK/Nrf2 pathway was significantly changed in the SMF group compared with that in the UFPM group, whereas opposite results were obtained for pathway inhibition. Conclusion: These findings indicate that SMF prevents OS responses and exerts beneficial effects against myocardial injury induced by UFPM + MI in rats. Furthermore, the PI3K/AKT/p38 MAPK/Nrf2 signaling pathway might be involved in the protective effects of SMF.

7.
Environ Toxicol ; 36(7): 1349-1361, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33729688

RESUMO

Air pollution is a growing public health burden associated with several negative health effects, especially cardiovascular disease. Shenlian extract (SL), a traditional Chinese medicine, has the effects of clearing heat-toxin and promoting blood circulation for removing blood stasis, and it has long been used to treat cardiovascular diseases and atherosclerosis. This study explored the underlying action mechanism of SL against ultrafine particle-induced myocardial ischemic injury (UFP-MI) through network pharmacology prediction and experimental verification. Male Sprague-Dawley rats with UFP-MI were pre-treated with SL intragastrically for 7 days. All the rats were then euthanized. Inflammatory cytokine detection and histopathological analysis were performed to assess the protective effects of SL. For the mechanism study, differentially expressed genes (DEGs) were identified in UFP-MI rats treated with SL through transcriptomic analysis. Subsequently, in combination with network pharmacology, potential pathways involved in the effects of SL treatment were identified using the Internet-based Computation Platform (www.tcmip.cn) and Cytoscape 3.6.0. Further validation experiments were performed to reveal the mechanism of the therapeutic effects of SL on UFP-MI. The results show that SL significantly suppressed inflammatory cell infiltration into myocardial tissue and exhibited significant anti-inflammatory activity. Transcriptomic analysis revealed that the DEGs after SL treatment had significant anti-inflammatory, immunomodulatory, and anti-viral activities. Network pharmacology analysis illustrated that the targets of SL were mainly involved in regulation of the inflammatory response, apoptotic process, innate immune response, platelet activation, and coagulation process. By combining transcriptomic and network pharmacology data, we found that SL may exert anti-inflammatory effects by acting on the NOD-like signaling pathway to regulate immune response activation and inhibit systemic inflammation. Verification experiments revealed that SL can suppress the secretion of the inflammatory cytokines Interleukin-1 (IL-1), Interleukin-18(IL-18) and Interleukin-33(IL-33) and suppress NLRP3 inflammasome activity. The results suggested that SL can directly inhibit the activation of NLRP3 inflammasomes and reduce the release of cytokines to protect against ultrafine particulate matter-aggravated myocardial ischemic injury.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Material Particulado/toxicidade , Ratos , Ratos Sprague-Dawley
8.
Zhongguo Zhong Yao Za Zhi ; 45(24): 6053-6064, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496147

RESUMO

Corona virus disease 2019(COVID-19) has brought untold human sufferings and economic tragedy worldwide. It causes acute myocardial injury and chronic damage of cardiovascular system, which has attracted much attention from researchers. For the immediate strategy for COVID-19, "drug repurposing" is a new opportunity for developing drugs to fight COVID-19. Artemisinin and its derivatives have a wide range of pharmacological activities. Recent studies have shown that artemisinin has clear cardiovascular protective effects. This paper summarizes the research progress on the pathogenesis the pathogenesis of COVID-19 in cardiovascular damage by 2019 novel coronavirus(2019-nCoV) virus from myocardial cell injury directly by 2019-nCoV virus,viral ligands competitively bind to ACE2 and then reduce the protective effect of ACE2 on cardiovascular disease, "cytokine storm" related myocardial damage, arrhythmia and sudden cardiac death induced by the infection and stress, myocardial injury by hypoxemia, heart damage side effects from COVID-19 drugs and summarizing the cardiovascular protective effects of artemisinin and its derivatives have activities of anti-arrhythmia, anti-myocardial ischemia, anti-atherosclerosis and plaque stabilization. Then analyzed the possible multi-pathway intervention effects of artemisinin-based drugs on multiple complications of COVID-19 based on its specific immunomodulatory effects, protective effects of tissue and organ damage and broad-spectrum antiviral effect, to provide clues for the treatment of cardiovascular complications of COVID-19, and give a new basis for the therapy of COVID-19 through "drug repurposing".


Assuntos
Artemisininas , COVID-19 , Doenças Cardiovasculares , Cardiopatias , Humanos , SARS-CoV-2
9.
Am J Transl Res ; 11(4): 2168-2180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105826

RESUMO

The combination of tetramethylpyrazine phosphate (TMPP) and borneol (BO) protects against cerebral ischemia. However, the mechanism for their synergistic effect is unclear. In this study, an oxygen-glucose deprivation (OGD) injured brain model was induced in microvascular endothelium cells (BMECs). TMPP and BO concentrations were optimized according to an MTT assay. Cells were divided into five groups: control, model, TMPP, BO, and TMPP+BO. Subsequently, oxidative stress was evaluated based on the levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS). Intracellular calcium ([Ca2+]i) was detected using a laser confocal microscope. Cellular apoptosis was examined via Hoechst 33342 staining, flow cytometry, and expression of p53, B-cell lymphoma 2 (BCL-2), BCL-2-like protein 4 (BAX), and caspase-3 mRNA. Angiogenesis was evaluated based on expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), fibroblast growth factor receptor 1 (FGFR1), Vascular endothelial growth factor receptor 1 (VEGFR1), and VEGFR2. Results showed that 5.0 µM TMPP and 0.5 µM BO were optimal. Monotherapy significantly enhanced CAT, BCL-2, and VEGF, and also reduced [Ca2+]i, apoptosis, and BAX. TMPP increased SOD, GSH-Px, and bFGF, and reduced MDA, ROS, p53, and caspase-3 levels. BO reduced VEGFR1 expression. TMPP+BO combination exhibited synergistic effects in decreasing apoptosis, and modulating expression of BCL-2, BAX, and VEGFR1. These results indicate that protection of OGD-injured BMECs by TMPP+BO combination involves anti-oxidation, apoptosis inhibition, and angiogenesis. Moreover, their synergistic mechanism was mainly related to the regulation of apoptosis and angiogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...